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1. Extreme Value and Trend Analysis based on
Statistical Modelling of Precipitation Time
Series

Silke Tromel and Christian-D. Schonwiese

Abstract Application of a generalized time series decomposition technique
shows, that observed German monthly precipitation time series can be inter-
preted as a realization of a Gumbel distributed random variable with time de-
pendent location parameter and time dependent scale parameter. The achieved
complete analytical description of the series, that is the probability density
function (PDF) for every time step of the observation period, allows prob-
ability assessments of extreme values for any threshold at any time. So, we
found in the western part of Germany, that climate is getting more extreme in
winter. Both the probability for exceeding the 95th percentile and the proba-
bility for falling under the 5th percentile are increasing. Contrary results are
found in summer. The spread of the distribution is shrinking. But in the south,
relatively high precipitation sums become more likely and relatively low pre-
cipitation sums become more unlikely in turn of the 20th century.

Furthermore, the decomposition technique provides the mean value of the
Gumbel distributed random variable for every time step, too. So, an alterna-
tive approach for estimating trends in observational precipiation time series
is achieved. On that way, the non-Gaussian characteristics can be taken into
account and robust estimates can be provided. In constrast, application of
the least squares estimator to non-Gaussian climate time series often leads to
everestimated trends in the expected value.

Fig. 1.0. Application of the generalized time series decomposition technique on modelled time
series of the coupled global model ECHAM4/OPYC3 [1.12], 1990-2100, under SRES A2 scenario
shows in January in the northern part of Europe strong increases in the probability for exceeding
the 95th percentile (top) and less pronounced decreases in the probability for falling under the 5th
percentile (bottom). In central Europe an area with increases in both kind of extremes can be seen.
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4 1 Extreme Value and Trend Analysis based on Statistical Modelling

1.1 Introduction

The analysis of climate variability as reflected in observational records is an
important challenge in statistical climatology. In particular, it is important
to estimate reliably trends in the mean value as well as changes in the prob-
ability of extreme values. In case of monthly or annual temperature data,
often Gaussian distributions are adequate for their description. If any linear
or non-linear trend of the time series average occurs, this may be described by
a shift of a Gaussian probability density function (PDF). Additionaly, some
other time series components like the annual cycle for example may also vary
and cause a shift to higher and lower values again during the observation pe-
riod as discussed below [1.2]. Grieser et al. (2002) [1.2] consider temperature
time series as a superposition of trends, annual cycle, episodic components,
extreme events and noise. Thereby, Gaussian assumptions are used, which im-
plies that residuals can not be distinguished from a realization of a Gaussian
distributed random variable. However, this simple model of a shifting Gaussian
distribution with constant variance over the observation period is not suitable
to describe the variability of precipitation time series. We observe a skewed
distribution as well as seasonal and sometimes long-term changes in the shape
of the distribution. Moreover, changes in the spread of the distribution have
to be considered, too. In summary, in addition to the expectation, also the
variance and/or further moments may vary with time.

Evidently, wrong assumptions concerning the PDF lead also to biased esti-
mators of trends or probabilities of extreme values. In consequence, we present
a generalized time series decomposition technique which allows any PDF and
any related parameter change in time. That is changes in the location, the
scale and the shape parameter of a PDF are allowed. In case of Gaussian dis-
tributions for example, the location parameter is realized by the average and
the scale parameter is realized by the variance.

Here, we apply this technique on precipitation time series from a German
station network focussed on extreme value and trend analysis. The detection
of structured time series components like trends etc., called signals, is based
on several parameters of a Gumbel or Weibull distribution, respectively, as
described in the following. Section 1.2 provides the defintion of the compo-
nents for the analysis of monthly climate time series and Sect. 1.3 presents a
brief overview of the detection of the analytical functions reflecting the time
dependence of the different distribution parameters. For all details see [1.10]
and [1.11].
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1.2 Components

The equation
i k(t) = djt" cos QWEt + e ,t" sin QWEt (1.1)

with wave number j = 1,...6 per year and k = 0, 1, 2 gives the basis functions
to describe the seasonal component. Evidently, the maximum wave number 6
is tuned to the analysis of climate data with a monthly sampling rate. Besides
fixed annual cycles, changes in amplitude and phase are allowed. For the am-
plitude linear and quadratic time dependence is considered. Superposition of
two or three harmonics of the annual cycle with the same wave number j but
different time dependence k in one time series yields

Si(t) = A;(t) cos (%112 (t - tj)) (1.2)

with amplitude

2
Aj(t) = | Y (2, +e2,) 1 (1.3)
k=0
and phase
2
> dj itk
12 k=0
ti(t) = —Warctcm > (1.4)
> ejnth
k=0

In this way, the detection of linear, progressive and degressive shaped changes
in phase and amplitude of the annual cycle is possible.
In addition, trends up to the order 5 are considered:

Ti(t) = gi + hit' withi=1,... 5. (1.5)

To detect all significant structures but neglecting, on the other hand, all un-
significant structures, in a first step the detection of the seasonal component
and the trend component of the parameters is performed simultanously within
the modified stepwise regression precedure (see Sect. 1.3 and [1.9]).

In a second step we observe sometimes relatively low-frequency variations
superposed on the components mentioned above. So we offer also polynomial
equations up to the order 5:

l
Vi) = co+ D _ait” (1.6)
=1
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6 1 Extreme Value and Trend Analysis based on Statistical Modelling

In a third step a search for extreme events, which are independent from changes
in the parameters of the distribution, is performed. According to Grieser et al.
(2002) [1.2], we define extreme events as a relatively small number of extreme
values which are unexpected within the scope of the fitted statistical model.
In contrast to extreme events, extreme values are relatively high or low val-
ues which occur by chance. A positive trend in the mean value, for example,
increases the probability of occurence of relatively high extreme values.
Within the strategy introduced detected extreme events are extracted and
replaced by a random value distributed conform with the PDF and the two
parameters at the given time (see Grieser et al., 2002 [1.2], for further details).
The iterative procedure for the detection of trends, seasonal component and
low-frequency variations is applied until no further extreme events are found.
In the application of Gaussian assumptions and the least-squares method, the
quadratic function which has to be minimized in order to fit any analytical
functions is called distance function of the Gaussian distribution. Generally
speaking, it depends on the robustness ( [1.3]) of the applied distance function
whether structured components are more or less influenced by extreme events.
Using an iterative procedure to find within these functions the best model
equations of two parameters of a PDF leads to a very extensive procedure.
Note that the model equation of one parameter influences the equation for the
second parameter and vice versa. To reduce this effort, an additional restriction
is introduced. For one of the parameters all functions mentioned above are

offered:
Py(t) = Siult) + Y Tult) + Vi(1). (1.7)

The second parameter is assumed to be of minor relevance to describe the time
series. Only the one cycle per year harmonic and one trend function can be
chosen:

P(t) = S0+ T (1.8)

At the end of the time series decomposition procedure, a priori assumed resid-
ual distribution is tested. In case of a chosen Gumbel distribution, residuals
should follow a Gumbel distribution G(0, 1) with a location parameter equals
0 and a location parameter equals 1 after elimination of detected structured
components in the parameters P,(t) and P,(¢). Additional stationarity of the
distribution points to a complete description of the time series within the PDF
and its time-dependent parameters.

It depends on the characteristics of the time series under consideration,
which PDF has to be chosen and which PDF parameter implies a larger num-
ber of degrees of freedom in comparison to others. Not before the end of the
precedure, including the analysis of the statistical properties of the residuals,
it can be decided whether the chosen model provides an adequate description
of the time series.
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1.3 The distance function and the model selection
criterion

The basis of any time series decomposition technique are the distance function
and a model selection criterion. The least-squares estimator broadly used in

Pdf
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Fig. 1.1. The PDF (left) of the Gaussian distribution and its distance function (right) under the
assumption of constant variance.

trend analyses is the maximum likelihood estimator under the assumption of
Gaussian distributed residuals with constant variance. This quadratic function
which has to be minimized is called distance function of the Gaussian distribu-
tion. So, consistently with the maximum likelihood principle another distance
function, defined as the negative logarithm of the PDF, replaces the function
of squared errors to be minimized, if we choose another distribution as basis
of the decomposition procedure, for example the Gumbel or the Weibull dis-
tribution. Then time dependence for different distribution parameters can be
allowed. With the exchange of the distance function, fitted basis functions de-
scribe changes in the location, scale or shape parameter of an appropriate PDF.
As an example, the corresponding distance function of the Gumbel distribution
is

(1) = In(b(t)) + exp (—x — "(t)) L e—al) (1.9)

b(t) b(t)
Under the assumption of statistically independent random variables the co-
efficients in the model equations for estimating a(t) and b(¢) are chosen by

minimizing
Zp (x,t) = min., (1.10)
t

w27 equivalent to the maximum of the loglikelihood function. In this work Powells
»s  method [1.6], p. 406, is used to minimize p in the multidimensional space.
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8 1 Extreme Value and Trend Analysis based on Statistical Modelling

Figure 1.1 shows the PDF of the Gaussian distribution and on the right hand-

0.012 16
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0.008 A

Pdf

0.006 A

0.004 -

Distance function

0.002 -

0.000

500 0 100 200 300 400 500

Precipitation [mm] Precipitation [mm]

Fig. 1.2. The PDF (left) of the Gumbel distribution with two different location and scale parameters
and the associated distance functions (right).

side its distance function, the quadratic function. The more deviant the points,
the greater the weight. The influence increases very fast because the proba-
bility of occurrence of relatively high or relatively low values is very small in
the Gaussian case. For comparison the Gumbel distribution for two different
location and scale parameters and the associated distance functions are shown
in Fig.1.2. The tails are more prominent and consequently, if we take a look
at the distance functions, the influence increases less rapidly. And one value
in a given distance from the location estimator has more weight the smaller
the scale parameter. So, structured components can be detected in different
parameters and estimators of different parameters compete with each other.
Finally, Fig. 1.3 shows the Weibull distribution with two different scale and
shape parameters. And on the right-hand side the distance functions clearly
show the dependence on the shape of the distribution. One important point is
that the PDF chosen and the basis functions used to describe the signals are
complementary. The other point is, that the basis used to describe one parame-
ter of the PDF influences the basis necessary to describe the second parameter.
That is why a dynamic procedure is necessary to estimate the coefficients of
the basis functions of the different components of both parameters simultane-
ously. A flexible model selection criterion often used is the stepwise regression.
Stepwise regression [1.9], p. 166, represents a dynamic model selection criterion
in order to find the optimal regression equation. Within the generalized time
series decomposition a modification to handle two distribution parameters is
required.

The common iterative application of forward selection and backward elimi-
nation is used to determine the model equation of a first distribution parameter
as, for example, the scale parameter b(t). But the distance function used now,
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Fig. 1.3. The PDF (left) of the Weibull distribution with two different scale and shape parameters
and the associated distance functions (right).

also depends on the selected model equation describing the second distribution
parameter (see Eq.1.9). Between these alternate parts redefinition of the sec-
ond parameter (a(t)) is inserted, now taking into account the selected model
of the first parameter (b(¢)). In the modified version, the flexible strategy of
stepwise regression is used twice. Now the parameters of the model equations
influence themselves mutually. A regressor of the first parameter selected at
an earlier stage can be superfluous because of a new entry candidate in the
model equation of the first parameter or because of the actualisation of the
second parameter and vice versa.

The common F-test statistic broadly used in regression analysis to decide
whether a specific regressor contributes significantly to explained variance is
sensitive to departures from the Gaussian distribution and, therefore, has to
be replaced. A test statistic based on a likelihood ratio test seems to be more
applicable, because likelihood values are computed anyhow minimizing the dis-
tance function (Eq. 1.10). Define D(p) as the minimum value of (1.10) subject
to the model containing p regressors and D(q) as the minimum value of (1.10)
subject to the model containing q regressors, with p > ¢, a direct generalization
of the common F-test may be based upon the statistic

Fy = (D(p) — D(q)) /(p —q) (1.11)

(Schrader and Hettmansperger, 1980) [1.8] with p — ¢ and N — p degrees of
freedom. Here N represents the number of data. If the density function of
the residuals has not the form exp(-p), the model assumptions are not ful-
filled and a correction term is necessary. For small sample sizes Schrader and
Hettmansperger (1980) propose to compare Fj; with a critical value from a
central F distribution.

The modified stepwise regression including a modified F-statistic (Eq.1.11)
represents the basis of a generalized time series decomposition technique. In-
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10 1 Extreme Value and Trend Analysis based on Statistical Modelling

serting the corresponding distance function it can be used for time series anal-
ysis based on any data distribution and any statistical model. Thereby, the
initial choice of the probability density function and the corresponding dis-
tance function should depend on the characteristics of the climate variable
under consideration. The Gumbel distribution, the Lognormal distribution as
well as the Gamma distribution are promising distributions already by reason
of the skewness. However, the Weibull distribution seems to be a promising
choice when changes in the shape of the distribution occur. Not until the final
residual analysis at the end of the decomposition tests whether a priori assumed
statistical model can be confirmed. If so, a complete analytical description of
the time series is achieved.

Actually, the generalized time series decomposition technique in a deter-
ministic and a statistical part is applied to 4 different models: Observed time
series can be interpreted as

e a realization of a Gaussian-distributed random variable with time-dependent
location (mean value) and additional time-dependent scale parameter (stan-
dard deviation),

e a realization of a Gumbel-distributed random variable with time-dependent
location and scale parameter, it depends on the choice to offer the location
or the scale parameter the greater pool of regressors if we talk about
— the Gumbel model with special emphasize on location or
— the Gumbel model with special emphasize on scale.

e a realization of a Weibull-distributed random variable with time-dependent
scale and shape parameter.

1.4 Application to a German station network

1.4.1 General remarks

The generalized time series decomposition technique is applied now to monthly
precipitation sums from a German station network of 132 time series covering
1901-2000. At least for the most part of the sample the decomposition tech-
nique shows, that observed time series can be interpreted as a realization of a
Gumbel distributed random variable with time-dependent location parameter
a(t) and time-dependent scale parameter b(f). So the decomposition is based
on the probability density function (PDF) of the Gumbel distribution

flz,t) = Wlt) {exp (—”’;(7;’)@)) exp [—e~(@=al)/b0)] } . (1.12)

Since the Gumbel model with emphasis on scale leads to a better description
of the time series, we define the location parameter a(t) = P,.(t) and the scale
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parameter b(t) = Py(t) (see Egs. 1.7 and 1.8). However, 7 out of 158400 (132-
1200) monthly precipitation sums are extracted as extreme events which are
unexpected within the scope of the fitted Gumbel model. As aforementioned
the analysis of the remaining residuals represent an important part of the
anaysis procedure. After elimination of the detected structures in the location
and in the scale parameter, residuals should fulfill the condition of the a priori
assumed statistical model. Concerning the German station network of 132
monthly precipitation sums, the residuals should be undistinguishable from the
realization of a Gumbel distributed random variable G(0,1) with the location
parameter 0 and the scale parameter 1. In fact the Kolmogorov-Smirnov test
[1.6] rejects in 7 out of 132 cases this hypothesis with a probability larger than
90%. This is less (<10%) than may be expected by chance. Furthermore, again
a Kolmorgorov-Smirnov test statistic is used in order to check the stationarity
of the residuals. Now in 6 out of 132 cases stationarity is rejected with a
probability larger than 90%. Consequently, the residuals confirm the model
applied and a complete description of the observed time series on the basis of
the Gumbel model with emphasis on the scale could be achieved.

The provided PDF for every time step of the observation period allows prob-
ability assessments of extreme values, i.e. the probability for exceeding a given
precipitation sum (threshold) at any time. In this context it should be reem-
phasized that in contrast to analyses dealing with the familiar Generalized
Extreme Value distribution [1.4] [1.1], the generalized time series decomposi-
tion technique presented in this issue requests the analytical description of the
whole times series instead of adressing exclusively the maxima of the observa-
tions. Furthermore, with the PDF the mean value of the Gumbel distributed
random variable can be given for every time step, too.

In Section 1.4.2 the time series decomposition of an examplary time series is
discussed in more detail for a better understanding of the method introduced.
Subsequently, results concerning changes in the probability of extreme values
and the expected value of the entire station network are presented in Sect. 1.4.3
and Sect. 1.4.4.

1.4.2 Example: Eisenbach-Bubenbach

In case of the Gumbel model with emphasis on scale the greater pool of re-
gressors is offered to the scale parameter b(t) of the Gumbel distribution and
the smaller one to the location parameter a(t). Table 1.1 shows the significant
functions detected in the location parameter a(t) and the scale parameter b(t)
of the Gumbel distribution to describe the time series observed in Eisenbach-
Bubenbach (47.97°N, 8.3°E). Phase angles are defined with reference to De-
cember 15th. Consequently, we observe a superposition of two harmonics with
wave number one per year. The function S; has a constant amplitude with
maximum in September but S; ; reveals linear time dependence in the ampli-
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Table 1.1. Significant functions in the location parameter a(t) and scale parameter b(t) for the
describtion of the monthly precipitation time series observed in Eisenbach-Bubenbach.

Parameter Function Amplitude [mm] Phase [days]
b(t) Sio 70415 82.73
Sy 0.148 - 1071 - t& 44.87
Ty 5.78 -
a(t) Sio 8.89 -tk 24.21

tude and has its maximum in January. So, the winter becomes more variable
and the summer becomes less variable during the observation period. The sea-
sonal component in the scale parameters shows a phase shift of 109 days from
September to January. The resulting effects can also seen in Figs. 1.4 and 1.5.
The former figure illustrates the decrease in the scale parameter in August. The
functions given in Tab. 1.1 define the scale and the location parameter of the
Gumbel distribution for every time step. No low-frequency variations (V(t))

August 1901 August 2000
0,014 o e 0,014 o F
m=108.51mm m=102,0Smm
0,012 o e 0,012 o E
P1= 6.82% Pl= 2.94%
- 0,01 — 0,01
> 0,008 F > o.008
— ha
% 0.006 F % 0.006 ]
o o
0,004 r 0,004 o
0,002 r 0,002 o
L] T T T T - [} T . T
0 50 100 150 200 250 300 o] 50 100 150 200 250 300
Precipitation L[mml Precipitation L[mm]

Fig. 1.4. On the basis of the entire time series estimated PDFs for two time steps: August 1901 (left)
and August 2000 (right). Areas below the 5th percentile are marked in light grey, the areas above
the 95th percentile in dark grey and the vertical line marks the expected value m. The respective
value m, the probability P1 for exceeding the 95th percentile and the probability P2 for falling
under the 5th percentile are given in the upper right corner respectively.

and no unexpected values defined as extreme events (see Sect. 1.2) within the
time series decomposition technique can be detected in the time series. How-
ever, probability assessments of extreme values can be based on the analytical
description provided. Figure 1.4 shows the estimated PDFs for the first and the
last August in the observation period. The probability P1 for exceeding the
95th percentile, in this case 204 mm, and the probability P2 for falling under
the 5th percentile, in the present case 27 mm, are also given for the two time
steps. The corresponding areas within the PDF are marked in dark grey and
light grey, respectively. First of all we see is a decrease in the scale parameter,
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going along with a decrease in the probability of exceeding the 95th percentile
from 6.8% to 2.9% and we see a smaller decrease in the probability of falling
under the 5th percentile from 3.2 to 0.6%. The probability of both kinds of
extremes has decreased and in contrast to the Gaussian model the expected
value is also affected. The expected value decreases from 109 mm to 102 mm in
the observation period. It is worth to mention that the least squares estimator
is not able to describe those decreases or increases in variability and not the
influence on the expected value either. In Fig. 1.5 integration over the dark

0.10 0.10
0.09 - January - 0.09
-
0.08 - 0.08
P g
007 4, November " Foor
..‘
LT o
° -
% 006 1mQ "*.)_.,~" L 0.06
. L]

g ’.§ : ‘..“ P /
o 005 e Sso *%eey. - 0.05
o - ®5e ““.

0.04 - ;< oo, August I 0.04

Sw ®eo,
- ‘o.‘.
4 ~~~ ““o L
0.03 S ~o ol 003
- - July ~~~~
0.02 {e - 0.02
0.01 T T T T 0.01
1900 1920 1940 1960 1980 2000
Year

Fig. 1.5. Estimated probabilities for exceeding the 95th percentile between 1901 and 2000 in
January, March, July, August and November at the station Eisenbach-Bubenbach.

grey area for every time step and different months has been done. Contrary
tendecies in the probability of exceeding the 95th percentile can be seen. At
the beginning the relatively high precipitation sums occured with higher prob-
ability in summer but at the end of the observation period the probability
for exceeding the threshold is highest in January. Both, the phase shift in the
seasonal component and the positive linear trend detected in the scale param-
eter describe an increasing variability in winter. The distribution is widening.
The tendencies in summer are contrary. Both kind of extremes become more
unlikely between 1901 and 2000.
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Fig. 1.6. Changes in the probability of occurence of a monthly precipitation sum greater than the
95th percentile (left) and in the probabiliy of occurence of a monthly precipitation sum smaller
than the 5th percentile (right). Results are given for January in the observation period 1901-2000.
Red dots indicate an increase and blue dots indicate an decrease in the probability of occurrence.
The size of the dots is proportional to the magnitude in probability change.

1.4.3 Probability assessment of extreme values

If the time series decomposition in a statistisal and a deterministic part suc-
ceeded, the time-dependent PDF f(x, Py(t), P,(t)) as a complete analytical
description is provided (see again Fig.1.4).

In this model

[ 1 r — Py(1) e
pG(:L‘ > :L‘sat) =1- / —_— {exp (—7) exp |—e (z=Pr(t))/ Py(t) dx
0 X0 [ ]

—0o0

zl—exp{—exp (—%ﬁr)(’f))} (1.13)

gives the probabiliy for exceeding the threshold z, at time ¢. Significant struc-
tured components in the location and the scale parameter cause changes in
the probability of occurence of these high precipitation sums. The probability
for falling under x, is given by
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pa(a < 7 ) = / Pi(t) {eXp (_*””;71;)(”) exp [~ P O)/Pa(0] } da

—0o0

:eXp{—eXp <—335;9753(t))}. (1.14)

In Fig. 1.6 tendencies in the probability of a monthly precipitation total greater
than the 95% percentile (left map) and tendencies in the probability of a
monthly precipitation total smaller than the 5% percentile (right map) are
shown. That is for every single time series the threshold is selected so that
95% (5%) of all monthly rainfall totals of the series are smaller than the re-
spective threshold. The result is in January an increase in the probability of
exceedance in the overwhelming majority of stations. In the right map the
tendencies in the probability of a monthly precipitation total less than the

55

T T T T T T T T T T .
551 155 g5
’.
P .
Sy -

541

154 54 - 54

531 153 531 53

52 152 gl 452

51 151 51t @ +51
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Fig. 1.7. Analogous maps to Fig. 1.6 with results for August.

5th percentile are seen. In January we see in the northern part of Germany
increases in the probability of occurrence for these small precipitation totals,
too. So relatively high and relatively small precipitation totals become more
likely during the 20th century. The distribution is widening. However, in the
south the distribution is shifting to higher values.

Figure 1.7 shows the respective results in August. In the northern part of
Germany decreases in the probabiliy of relatively high precipitation sums are
detected during the 20th century. But in the south we see several increases
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in August as well as in January. In the right map it can be seen, that de-
creases in the probability of occurrence of relatively small precipitation totals
are detected in the overwhelming majority of stations. Combined with the ten-
dencies in the probability of exceedance of the 95th percentile we come to the
conclusion that in summer in the northern part of Germany the extreme high
and extreme low precipitation totals are getting more unlikely. In the south
we observe again at several stations a shift of the distribution to higher values
but results are not as uniform in that region in summer.

1.4.4 Changes in the expected value

As could already be seen in Fig.1.4 the statistical modelling provides the
expected value for every time step of the observation period. Consequently,
the method introduced represents an alternative approach to estimate trends.
The difference in the expected value between the January 2000 and the January
in the year 1901 is defined as the trend in the expected value at every station
in that month. With the use of an appropriate distance function relatively
high precipitation sums do not get more weight than can be justified from a
statistical point of view. Additionally, changes in different parameters of the
distribution can be taken into account, because the expected value of a Gumbel
distributed random variable is defined as

W(t) = ag(t) + ba(t)y = ac(t) + 0.57722 - be(t) (1.15)

with the location parameter ag(t), the scale parameter bg(t), and Eulers con-
stant . Because of the skewness of the distribution a change in the scale
parameter causes changes in the expected value, too. And the expected value
of a Weibull distributed random variable depends on the location parameter
aw, the scale parameter by, and the shape parameter cyy:

Cw

The Gamma-function I is definied as
I'(z)= /t“etdt. (1.17)
0

A familiar nonparametric trend test would be the Mann-Kendall trend test
[1.5]. Even though this test contains information about a increase or decrease
in the time series considered, no information about the temporal evolution
nor the amplitude of the trend is provided. In most cases, changes in the
expected values of non-Gaussian climate time series, e.g. ordinary trend maps
are estimated using the least squares method, too. Comparison of the trend
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January [ﬁ,

Fig. 1.8. Observed trends 1901-2000 in January estimated with the least-squares method (left)
and on the basis of the statistical modelling of the time series using the distance function of the
Gumbel distribution (right).

map on the basis of the least-squares-method with the trend map estimated on
the basis of the method introduced (Fig.1.8) shows in January similar spatial
structures. We observe increases in the western and southern part of Germany,
but decreases in the eastern part. However, the amplitudes are smaller using
the distance function of the Gumbel distribution.

Another advantage of the method introduced is that trends of a partic-
ular month are estimated on the basis of the whole sample size. In order to
demonstrate the large effect of the sample size on trend analysis results, Monte-
Carlo simulations have been performed. 100 time series with a length of 100
or 1000 time steps, respectively, of Gumbel-distributed variables with trends
Ap have been generated. Subsequently, we applied the least-squares estimator
and tried to find the prescribed trend. In Tab.1.2 the mean least-squares-
estimator A_uKQ, its standard deviation NI well as the smallest and the

greatest estimator, Al and Au}gQ are shown for eight different experiments
using the longer generated time series (1000 time steps). A positive bias can
be observed. Table 1.3 shows the analogous results for the smaller sample size
(100 time steps). The absolute value of the bias has clearly increased but the
trend estimator shows a negative bias now. The estimators variance o Ap has in-

creased remarkably. It may be higher than the trend magnitude. Consequently,
the greater sample size of precipitation totals taken into account within the
statistical modelling approach (1200 values instead of 100 in the present case)
implies a smaller mean squared error of the maximum likelihood estimator
given by the sum of the quadratic bias and the variance of the estimator.
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Table 1.2. Trends of 100 generated Gumbel-distributed time series with 1000 time steps and
different linear changes in the location parameter (Aa) and constant or additional changing scale
parameter (b). The resulting changes in the expected value Al (see again Eq.1.15) are compared
to mean least-squares estimator of the 100 time series A_MKQ, the standard deviation TAL of the

estimator as well as the greatest and the smallest trend estimator (Auj{(Q bzw. Auj{(Q).

Aa=15 Aa=15 Aa=8 Aa=0 Aa=8 Aa=-15 Aa=-8 Aa=0
b=50 b=20 b=40 b=40 b=40+A8 b=50 b=40-A8 b=40+A10

Ap 15 15 8 0 12.6 -15 -12.6 2.77
A_uKQ 1549 1520 839 0.39 13.05 -14.51 -12.27  6.22
TAN 6.97 2.79 557 557 6.16 6.70 5.02 6.31
Ay, 0.78 931 -3.38 -11.38 0.08 -29.22 -22.83 -7.06

AUt 33.44 22.38 2275 14.75 28.23 3.44 1.27 21.81
Uro

Table 1.3. Analogous to Tab. 1.2, but considering Gumbel-distributed time-series with 100 time
steps.

Aa=15 Aa=15 Aa=8 Aa=0 Aa=S8 Aa—-15 Aa=-8 Aa=0
b=50 b=20 b=40 b=40 b=40+A8 b=50 b=40-A8 b=40-+A10

Ap 15 15 8 0 12.6 -15 -12.6 D.77
A_uKQ 12.85 14.14 6.28 -1.72 10.78  -17.15  -14.21 3.90
TApL 23.82  9.53 19.06 19.06 2091  23.82 17.31 21.39
Ay, -43.84  -8.54 -39.07 -47.07 -38.96 -73.84  -55.18 -49.93
Au}gQ 09.52  32.81 43.62 35.62 51.44  29.52 22.13 46.37

1.5 Conclusions

A generalized consistent decomposition procedure of precipitation time series
into a statistical and a deterministic part is introduced. The basis functions
allowed to describe the deterministic components only contain trends, annual
cycle, episodic component and extreme events in order to restrict to physically
explainable functions. Under the additional assumption that climate change
is not restricted to the mean value the signal detection technique is applied
to two instead of one parameter of a PDF, which can be chosen without any
further restriction.

In particular, we show that a time series decomposition technique based on
a Gumbel distribution, with flexible location and scale parameter, succeeds to
describe monthly precipitation total time series from German stations com-
pletely. The model provides a full analytical description of the time series. On
this basis probabilities of exceeding defined thresholds can be estimated reli-
ably for every time step of the observation period. But the provided complete
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analytical description can be used to calculate the expected value for every
time step, too. So, statistical modelling represents an alternative approach for
estimating broadly used trends in observational precipitation time series. In
this way non-Gaussian characteristics can be taken into account. Additionally,
changes in different parameters can be considered and the mean squared error
of the trend estimator is smaller using the statistical modelling.

Application of the method to a German station network of 132 time series
covering 1901-2000, shows in winter and summer at several stations in the
southern part of Germany an increase in the probability of exceeding the 95th
percentile and a decrease in the probability of falling under the 5th percentile.
In the western part, we observe the same phenomenon in the summer months,
but these changes go along with smaller magnitudes. However, climate is get-
ting more extreme in that region in winter: Probability for both exceeding
the 95th percentile and for falling under the 5th percentile is increasing. In the
eastern part of Germany, increases in the probability of occurrence of relatively
low precipitation in winter as well as decreases in both probabilities (>95th
percentile, <5th percentile) in summer and autumn prevail.

Exemplary, the trend map on the basis of the familiar least squares method
is compared to the trend map calculated on the basis of the Gumbel model.
Both maps show positive trends in the western and southern part of Germany
and negative trends in the eastern part. However, the robust method provides
smaller amplitudes.
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ACF
AP1824
ASA
CDF
CMDS
CWT
DEM
DJF
DFA
DWD
ECHAM
ENSO
EOF
EXP

FA
FARIMA
FAR
FMA
FFT
FFM
GEV
GLO
GNO
GPD
GRDC
HadRM
iid.
ISOMAP
JJA

autocorrelation function

Area Precipitation 1824

autocorrelation spectrum analysis

cumulative distribution function

classical multidimensional scaling

continous wavelet transformation

Digital Elevation Model

December, January, February

detrended fluctuation analysis

Deutscher Wetterdienst (German Weather Service)

El Nifio/Southern Oscillation

empirical orthogonal function

exponential distribution

(standard) fluctuation analysis

fractionally integrated auto-regressive moving average process
fractionally integrated auto-regressive process
February, March, April

fast Fourier transform

Fourier Filtering Method

generalised extreme value distribution
generalised logistic distribution

generalised normal distribution

generalized Pareto distribution

Global Runoff Data Centre

Hadley Centre regional model

independent and identically distributed
isometric feature mapping

June, July, August
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LARSIM
LRD
MC
MICE
MDS
ML
MLE
MRL
M-SSA
N(u, 0?)
N
NAO
NLDR
OND
PCA
PC
PDF
PE3
POT
PP
PUB
PWM
R

RC
ROI
SLP
SRD
SSA

UNF
WN (u,0%)
WAK
WTMM

m a.s.l.

Large Area Runoff Simulation Model
long-range dependence

Monte-Carlo simulations

modelling impact of climate change
multidimensional scaling

maximum likelihood

maximum likelihood estimation

mean residual life plot

multichannel singular system analysis
Gaussian/normal distribution with mean p and variance 0.
Precipitation

North Atlantic Oscillation

nonlinear dimensionality reduction
October, November, December
principal component analysis
principal component

probability density function

Pearson type-III distribution

peak over threshold

point process

prediction of ungauged basins
probability weighted moments
environment for statistical computing www.r-project.org
reconstructed component

see level pressure
short-range dependence
singular system analysis

air temperature

wind speed

uniform distribution
Gaussian /normal white noise
Wakeby distribution

Wind Direction
meter above sea level
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