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Abstract. A systematic approach to the direct numerical simulation (DNS)4

of breaking upper-mesospheric inertia-gravity waves of amplitude close to5

or above the threshold for static instability is presented. Normal mode or sin-6

gular vector analysis applied in a frame of reference moving with the phase7

velocity of the wave (in which the wave is a steady solution) is used to de-8

termine the most likely scale and structure of the primary instability and to9

initialize nonlinear “2.5-D” simulations (with three-dimensional velocity and10

vorticity fields but depending only on two spatial coordinates). Singular vec-11

tor analysis is then applied to the time-dependent 2.5-D solution to predict12

the transition of the breaking event to three-dimensional turbulence and to13

initialize three-dimensional DNS. The careful choice of the computational14

domain and the relatively low Reynolds numbers, on the order of 25000, rel-15

evant to breaking waves in the upper mesosphere, make the three-dimensional16

DNS tractable with present day computing clusters. Three test cases are pre-17

sented: a statically unstable low-frequency inertia-gravity wave, a statically18

and dynamically stable inertia-gravity wave, and a statically unstable high-19

frequency gravity wave. The three-dimensional DNS are compared to ensem-20

bles of 2.5-D simulations. In general the decay of the wave and generation21

of turbulence is faster in three dimensions, but the results are otherwise qual-22

itatively and quantitatively similar, suggesting that results of 2.5-D simu-23

lations are meaningful if the domain and initial condition are chosen prop-24

erly.25
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1. Introduction

Inertia-gravity waves are a ubiquitous feature of the dynamics in the atmosphere and26

play a pivotal role in the global circulation. They are forced mostly by flow over orog-27

raphy [e.g. Smith, 1979; Lilly et al., 1982; McFarlane, 1987], by convection [e.g. Chun28

et al., 2001; Grimsdell et al., 2010], and by spontaneous imbalance of the mean flow in29

the troposphere [O’Sullivan and Dunkerton, 1995; Plougonven and Snyder , 2007], and30

they transport energy and momentum from the region where they are forced to the region31

where they are dissipated (e.g. through breaking), often thousands of kilometres away.32

Since the waves are filtered and refracted by the environment through which they prop-33

agate, their effects are highly nonuniform. Various phenomena, such as the cold summer34

mesopause [Hines , 1965; Lindzen, 1973] and the quasi-biennial oscillation in the equatorial35

stratosphere [e.g. Baldwin et al., 2001], cannot be explained nor reproduced in weather36

and climate simulations without accounting for the effect of gravity waves [see Fritts and37

Alexander , 2003, for an overview of gravity waves in the middle atmosphere]. In almost38

all cases, this is done through rather crude and extensively tuned parameterizations based39

on combinations of linear wave theory [beginning with Lindzen, 1981], empirical observa-40

tions of time-mean energy spectra [e.g. Hines , 1997], and very simplified treatments of the41

breaking process. See Kim et al. [2003] and McLandress [1998] for reviews of the various42

standard parameterization schemes.43

Inertia-gravity wave breaking involves time scales from seconds to hours and spatial44

scales from metres to tens of kilometres. It is therefore a demanding problem for both ob-45

servational and computational investigation. The representation of small-scale turbulence46
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in wave-breaking simulations and of wave breaking in weather and climate simulations47

represent two important but separate parameterization problems in atmospheric science.48

The former is the goal of Large Eddy Simulation (LES). To be trusted, an LES scheme49

must be tested against turbulence-resolving Direct Numerical Simulation (DNS). The pur-50

pose of the present study is to describe a systematic strategy for constructing such DNS51

and to provide DNS for a selection of waves with different characteristics. To qualify as52

DNS, a simulation of a turbulent flow must resolve scales smaller than the Kolmogorov53

length η, which depends on the kinematic viscosity ν and the maximum rate of kinetic54

energy dissipation. η represents the scale below which molecular viscosity and diffusion55

dominate over inertial effects and energy is removed from the system or converted to heat.56

For realistic flows in the troposphere, η is on the order of millimetres [Vallis , 2006] so for57

gravity waves with wavelengths on the order of kilometres DNS is impossible. One case58

where DNS is possible is waves in the upper mesosphere (about 80 km altitude), where59

due to the extremely low ambient density, ν is about 1 m2s−1 in the U.S. Standard Atmo-60

sphere [NOAA et al., 1976]. Remmler et al. [2013] found from simulation of a breaking61

statically unstable 3 km inertia-gravity wave a Kolmogorov length of between 1 m and 362

m so that a 3-D DNS could be achieved with on the order of 109 gridcells.63

There have been a number of recent numerical studies of breaking gravity waves. Fritts64

et al. [2009a, b] performed high resolution DNS of high-frequency gravity waves (with65

periods of a few times the background buoyancy period) with amplitudes slightly above66

and slightly below the threshold for convective instability. They found that both waves67

break down to about a third of their initial amplitude within one or two wave periods68

and that the early phase of wave breaking is dominated by turbulent three-dimensional69
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motion, while wave-wave interactions between the primary wave and secondary waves70

excited by the breaking persist for many wave periods. Fritts et al. [2013] and Fritts and71

Wang [2013] performed highly resolved, high Reynolds number DNS of a monochromatic72

gravity wave breaking due to interaction with a vertically varying “fine-structure” shear73

flow, finding that the direction of the fine-structure flow relative to the plane of the wave74

strongly affected the degree to which the gravity wave broke down into turbulence.75

The above studies neglect the Coriolis effect and thus the velocity field of the primary76

gravity wave is strictly in the plane of phase propagation. The propagation of inertia-77

gravity waves, on the other hand, is maintained by both the vertical restoring force due to78

the stratification and the horizontal restoring force due to the Coriolis effect (the vertical79

component of the Coriolis force is typically neglected). Since in the atmosphere the former80

is much stronger than the latter, waves with steep phase propagation, with their nearly81

horizontal fluid parcel motions strongly influenced by the Coriolis force, have much lower82

frequency than waves with shallow phase propagation. Instability and breaking are very83

different for inertia-gravity waves of different frequencies [Achatz , 2005, 2007a, b; Lelong84

and Dunkerton, 1998] so it is difficult to extrapolate any conclusions from a DNS study85

to waves with higher or lower frequency. Remmler et al. [2013] produced a DNS of a86

statically unstable low-frequency inertia-gravity wave (referred to as case I later in this87

paper). The low-frequency wave decays much less than a high-frequency wave, only to88

about three quarters of its initial amplitude within one wave period, about 8 hours in that89

case. Also, the distribution of turbulent energy dissipation is much more inhomogeneous90

and intermittent than for a high-frequency wave.91
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Other recent studies have simulated not just one wavelength of a monochromatic wave92

in a triply periodic domain (as is done in the present work), but the more realistic case of a93

train of waves propagating through a variable background as they break. Lund and Fritts94

[2012] considered waves propagating through the thermosphere, their amplitude growing95

due to the decreasing density and changing due to the height-dependent stratification and96

chemical composition. Liu et al. [2010] considered waves excited at the surface of the ocean97

propagating downward through the thermocline. These studies must inevitably sacrifice98

model resolution to accommodate multiple wavelengths but are essential if conclusions99

from the more fully resolved idealized DNS are to be applied to more practical problems100

such as the parameterization of wave breaking in general circulation models, where a101

monochromatic inertia-gravity wave is unlikely to occur in isolation, especially at the102

amplitude for convective instability.103

Since a DNS of a breaking inertia-gravity wave is computationally expensive, time-104

consuming, and produces a dauntingly complex and nonlinear result, it is important to105

choose the domain and parameters carefully. The present work describes a systematic,106

hierachical approach to analyzing an inertia-gravity wave breaking event, combining linear107

modal analysis with two- and three-dimensional nonlinear simulation. Aspects of this108

procedure have already been published in Achatz [2007a, b], Fruman and Achatz [2012]109

and Remmler et al. [2013]. Three test cases were chosen, representing waves with different110

inherent time scales and breaking behaviour.111

The analysis is greatly simplified if one works with the Boussinesq approximation on an112

f -plane with a constant background Brunt-Väisälä frequency, enabling the use of periodic113

boundary conditions in any three orthogonal directions, one of which is usually chosen114
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parallel to the direction of phase-propagation of the wave. While obviously not realistic for115

a general description of the dynamics in the mesosphere, one might justify the Boussinesq116

approximiation as long as the wavelength of the wave is small compared to the density117

scale height and the breaking process is fast compared to the vertical group propagation118

of the wave.119

The method proceeds in four stages: (1) solution (in the form of normal modes or120

singular vectors) of the equations linearized about the basic state wave, determining the121

primary instability structures; (2) nonlinear two-dimensional (in space) numerical solution122

of the full equations using the result of stage 1 as initial condition; (3) solution in the form123

of singular vectors (varying in the remaining spatial direction) of the Boussinesq equations124

linearized about the time-dependent result of stage 2; (4) three-dimensional DNS using125

the linear solutions from stages 1 and 3 as initial condition and their wavelengths for126

the size of the computational domain. In some cases the resulting computational domain127

is relatively narrow in either the streamwise or the spanwise direction and therefore the128

three-dimensional DNS is comparatively very efficient. Implicit in the strategy is that129

there is a temporal and/or spatial scale separation between the primary and secondary130

instabilities so that the nonlinear two-dimensional solution (stage 2) resembles the realistic131

(three-dimensional) evolution for a short time while secondary instabilities – different in132

scale and character from the primary instabilities calculated in stage 1 – develop. This133

is the advantage of the approach over simply initializing three-dimensional DNS with134

mutually orthogonal primary perturbations.135

The paper is organized as follows. Section 2 presents the governing equations, the136

monochromatic inertia-gravity wave solution and the rotated coordinate system used.137
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Section 3 describes in detail the four-stage approach to gravity-wave breaking analysis.138

Section 4 presents the three test cases. The numerical methods used are explained in139

section 5. The results of the analyses are presented in section 6. Appendices elaborate140

on the calculation of normal modes and singular vectors, on projection of the evolving141

solution onto the original wave, and on the computing resources used for the 3-D DNS.142

2. Governing Equations and the Gravity Wave Solution

Without loss of generality we may assume that the monochromatic inertia-gravity wave143

is propagating in the x-z plane and let Θ be its angle of phase propagation with respect144

to the x-axis. The problem is best solved in a reference frame (ξ, y, ζ) rotated about the145

y-axis through an angle π/2−Θ so that the wave-vector of the gravity wave is parallel to146

the ζ-axis (see left panel of figure 1). That is,147

ξ = x sinΘ− z cosΘ, (1a)

ζ = x cosΘ + z sinΘ. (1b)

The Boussinesq equations may be written148

∂vvv

∂t
+ (vvv · ∇)vvv = bê̂êez − fê̂êez × vvv −∇p+ ν∇2vvv, (2a)

∂b

∂t
+ (vvv · ∇) b = −N2ê̂êez · vvv + µ∇2b, (2b)

∇ · vvv = 0, (2c)

where vvv = (uξ, v, wζ) is the fluid velocity, b is buoyancy, p is pressure normalized by a149

constant background density, ê̂êez is the unit vector in the true vertical direction, N is150

the Brunt-Väisälä frequency, f is the Coriolis parameter, and ν and µ are the kinematic151

viscosity and thermal diffusivity respectively.152
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An inertia-gravity wave propagating in the x-z plane at an angle Θ to the x-axis and153

with upward group velocity may be written in the form154

[uξ, v, wζ , b] = [Uξ0, V0,Wζ0, B0]

≡ Re

{
a

[
iKω

km
,
f

k
, 0,−N2

m

]
eiϕ

}
, (3)

where K is the magnitude of the wavevector, k = K cosΘ and m = K sinΘ are its155

horizontal and vertical components in the Earth frame,156

ω = −
√

f 2 sin2 Θ+N2 cos2 Θ (4)

is the frequency, and ϕ = Kζ − ωt is the wave phase. The nondimensional (complex)157

wave amplitude a is defined such that a wave with |a| = 1 is neutral with respect to static158

instability at its least stable point, namely where the vertical gradient of total potential159

temperature is least. Equation (3) is an exact solution to (2) in the inviscid (ν = µ = 0)160

limit. When the Prandtl number is unity (i.e. ν = µ), the solution decays exponentially161

with time such that162

a(t) = a(0)e−νK2t. (5)

In the midlatitude mesosphere, N is about one hundred times larger than f , so the163

properties of the wave are very sensitive to Θ. A wave with Θ close to 90◦ has a relatively164

low frequency – close to f – and elliptically polarized velocity in the streamwise-spanwise165

(ξ-y) plane, i.e. uξ and v are of similar amplitude. Since f strongly affects the form166

of these waves, we call them inertia-gravity waves (IGW). A wave with shallower phase167

propagation has much higher frequency, approximately equal to N cosΘ, and a linearly168

polarized transverse velocity field (|v| ≪ |u|). We call such waves high-frequency gravity169

waves (HGW) (strictly speaking, these are also inertia-gravity waves but rotation plays a170
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negligible role). Lelong and Dunkerton [1998] and Achatz [2005] showed that the nature171

of the instabilities of the two categories of waves are markedly different. This is primarily172

because of the influence of the transverse velocity component – large in the IGW and small173

in the HGW – which has maximum vertical shear at the levels of maximum buoyancy174

gradient, and because of the important role played by horizontal buoyancy gradients and175

horizontal velocity shear in the HGW.176

3. Four-stage Approach to the Simulation of Gravity-Wave Breaking

In order to quantify the temporal and spatial scales of gravity-wave breaking and to177

design a meaningful but still computationally tractable (and economical) 3-D DNS, we178

employ the following four-stage combination of linear and nonlinear analysis.179

3.1. Primary instability analysis and 2.5-dimensional DNS

The first step is to perform a large number of one-dimensional linear calculations to180

determine the wavelength, orientation and spatial structure of the most unstable pertur-181

bations to the gravity wave.182

The Boussinesq equations (2) are linearized about the gravity wave (3) to yield the183

system184

D′u′
ξ

Dt
+ w′

ζ

dUξ0

dϕ
+ cosΘb′ − f sinΘv′ +

∂p′

∂ξ
= ν∇2u′

ξ, (6a)

D′v′

Dt
+ w′

ζ

dV0

dϕ
+ f

(
sinΘu′

ξ + cosΘw′
ζ

)
+

∂p′

∂y
= ν∇2v′, (6b)

D′w′
ζ

Dt
− sinΘb′ − f cosΘv′ +K

∂p′

∂ϕ
= ν∇2w′

ζ , (6c)

D′b′

Dt
+ w′

ζ

dB0

dϕ
+N2

(
− cosΘu′

ξ + sinΘw′
ζ

)
= µ∇2b′, (6d)

∂u′
ξ

∂ξ
+

∂v′

∂y
+K

∂w′
ζ

∂ϕ
= 0, (6e)
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where [u′
ξ, v

′, w′
ζ , b

′] is a small departure from (3) and185

D′

Dt
≡ ∂

∂t
+ Uξ0

∂

∂ξ
+ V0

∂

∂y
− ω

∂

∂ϕ
. (7)

Since the coefficients of u′
ξ, v

′, w′
ζ and b′ in (6) are independent of streamwise and spanwise186

position (ξ, y), solutions may be sought in the form187

[u′
ξ, v

′, w′
ζ , b

′] = ℜ
{
[û′

ξ(ϕ, t), v̂
′(ϕ, t), ŵ′

ζ(ϕ, t), b̂
′(ϕ, t)] exp [i(kξξ + kyy)]

}
, (8)

where kξ and ky are constants. The ansatz (8) is inserted in (6) and the resulting system188

of equations for [û′
ξ, v̂

′, ŵ′
ζ , b̂

′] are solved numerically (see section 5).189

Note that the dissipation of the gravity wave solution is neglected in (6) so that the190

system of equations for [û′
ξ, v̂

′, ŵ′
ζ , b̂

′] is homogeneous and autonomous and therefore admits191

normal mode analysis. The approximation is valid for our test cases since the time scale192

of the decay of the wave, (νK2)−1 ≈ 2 days, is long compared to the time for which the193

linear model is run (5 or 7.5 minutes) and the inverse growth rates of the fastest growing194

modes (about 100 s).195

Normal modes are solutions of (6) in which the time dependence of [u′
ξ, v

′, w′
ζ , b

′] is a196

complex exponential function. For statically unstable waves (|a| > 1), there typically197

exist exponentially growing solutions, and the normal mode with largest growth factor198

is the dominant linear mode. For statically and dynamically stable waves, by which we199

mean that the Richardson number corresponding to the solution (3), viz200

RiIGW =
N2(1 + a sinϕ)

a2 tan2Θ(ω2 cos2 ϕ+ f2 sin2 ϕ)
, (9)

is greater than 1/4 [the sufficient condition for linear stability of a steady, stratified shear201

flow; see Howard , 1961; Miles , 1961], there are typically no exponentially growing normal202

modes, so the leading singular vector for a given optimization time is calculated instead.203
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The leading singular vector [Farrell and Ioannou, 1996a, b] for a given perturbation wave-204

length λ∥ and orientation angle α is defined as the perturbation whose energy (or another205

norm) grows by the largest factor in the given optimization time (as governed by the206

linearized equations). Although singular vectors necessarily consist of superpositions of207

normal modes, they can have large growth factors even when all normal modes are ex-208

ponentially decaying, since the latter are not orthogonal (i.e. “non-normal”) with respect209

to the energy scalar product. Details of the computation of normal modes and singular210

vectors are given in appendix A [see also Achatz , 2005, 2007a].211

The second stage is to perform nonlinear two-dimensional simulations initialized with212

the original gravity wave and one of the “more interesting” normal modes (or singular213

vectors), by which is meant those with the highest linear growth rate (or growth factor).214

In order to perform these simulations, a second rotation of the coordinate system, this215

time through an angle α about the ζ-axis (right panel of figure 1) is required, leading to216

the new coordinates217

x∥ = ξ cosα+ y sinα, (10a)

y⊥ = −ξ sinα+ y cosα. (10b)

and corresponding velocity components u∥ and v⊥.218

Since the dynamics – in terms of, for example, the energy exchange processes – are so219

different for transverse (α = 90◦) and parallel (α = 0◦) perturbations [Andreassen et al.,220

1994; Lelong and Dunkerton, 1998; Achatz , 2007a; Fruman and Achatz , 2012], both the221

leading transverse and parallel perturbations are tried even when one has a much lower222

linear growth rate (or growth factor) than the other. As we will see, perturbation by the223

mode with smaller linear growth rate (or growth factor) can have a much more profound224
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effect on the breaking of the original wave in nonlinear simulations. These simulations are225

called here “2.5-dimensional” (2.5-D) because although there are only two independent226

spatial coordinates, the velocity and vorticity fields are three-dimensional. Since there is227

no conservation of enstrophy in this system (due to the vortex-tilting mechanism being228

active) the turbulent energy cascade is direct as in three-dimensional turbulence rather229

than inverse as in classical two-dimensional turbulence [e.g. Kraichnan and Montgomery ,230

1980].231

For each 2.5-D simulation, the projection of the solution onto the original gravity wave232

mode [see appendix B and Achatz , 2007b, for details] is plotted versus time and compared233

to the laminar decay of an unperturbed wave (see Eq. 5). A breaking wave decays faster,234

at first due to energy exchange with the growing linear mode and later due to interaction235

with the turbulence excited by the breaking. The latter process can last much longer than236

the time scale of the linear perturbation and as long as the period of the original wave. The237

decay of the gravity wave amplitude is the quantity most relevant to parameterizations238

of gravity-wave drag in atmospheric models.239

Other diagnostics used are the sum of the kinetic energy dissipation rate ϵk and the240

potential energy dissipation rate ϵp, where241

ϵk =
ν

2

(
∂vi
∂xj

+
∂vj
∂xi

)(
∂vi
∂xj

+
∂vj
∂xi

)
, (11a)

ϵp =
µ

N2

∂b

∂xi

∂b

∂xi

(11b)

(summation over repeated indices is implied), and the streamwise-spanwise-averaged242

energy–wavelength spectra. Note that in nature the dissipation of kinetic energy leads to243

localized frictional heating, an effect not considered in the present study.244
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3.2. Secondary instability analysis and three-dimensional DNS

The 2.5-D solution, which we write245

[u∥, v⊥, wζ , b] =
[
U∥(x∥, ϕ, t), V⊥(x∥, ϕ, t),Wζ(x∥, ϕ, t), B(x∥, ϕ, t)

]
, (12)

remains two-dimensional in space if not perturbed, but in nature the breaking of a gravity246

wave is inherently three-dimensional. Therefore, in the next stage, the 2.5-D simulations247

in which the gravity wave amplitude decreased by the largest amount are subjected to248

a secondary instability analysis. The full equations (2) are linearized about the time-249

dependent 2.5-D solution (12) to yield250

D′′u′′
∥

Dt
+

∂U∥

∂x∥
u′′
∥ +K

∂U∥

∂ϕ
w′′

ζ + cosα cosΘb′′

− f
(
sinΘv′′⊥ + sinα cosΘu′′

∥
)
+

∂p′′

∂x∥
= ν∇2u′′

∥, (13a)

D′′v′′⊥
Dt

+
∂V⊥

∂x∥
u′′
∥ +K

∂V⊥

∂ϕ
w′′

ζ − sinα cosΘb′′

+ f
(
sinΘu′′

∥ + cosα cosΘw′′
ζ

)
+

∂p′′

∂y⊥
= ν∇2v′′⊥, (13b)

D′′w′′
ζ

Dt
+

∂Wζ

∂x∥
u′′
∥ +K

∂Wζ

∂ϕ
w′′

ζ − sinΘb′′

− f
(
sinα cosΘu′′

∥ + cosα cosΘv′′⊥
)
+K

∂p′′

∂ϕ
= ν∇2w′′

ζ , (13c)

D′′b′′

Dt
+N2

(
− cosα cosΘu′′

∥ + sinα cosΘv′′⊥

+sinΘw′′
ζ

)
= µ∇2b′′, (13d)

∂u′′
∥

∂x∥
+

∂v′′⊥
∂y⊥

+K
∂w′′

ζ

∂ϕ
= 0, (13e)

where251

D′′

Dt
≡ ∂

∂t
+ U∥

∂

∂x∥
+ V⊥

∂

∂y⊥
+ (KWζ − ω)

∂

∂ϕ
, (14)
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and u′′
∥, v

′′
⊥, w

′′
ζ , and b′′ are small perturbations from the 2.5-D basic state (12). Solutions252

are sought in the form253

[u′′
∥, v

′′
⊥, w

′′
ζ , b

′′] = ℜ
{
[û′′

∥(x∥, ϕ, t), v̂
′′
⊥(x∥, ϕ, t), ŵ

′′
ζ (x∥, ϕ, t), b̂

′′(x∥, ϕ, t)]× exp(ik⊥y⊥)
}
,

(15)

where k⊥ is the wavenumber in the y⊥ direction (perpendicular to the plane defined by254

the wavevectors of the gravity wave and the primary perturbation).255

Since the coefficients in (13) are time dependent, normal mode solutions of the form (15)256

– i.e. solutions with complex-exponential time-dependence – do not exist. Instead, the257

leading singular vectors are computed for various wavelengths λ⊥. This entails calculating258

eigenvectors involving tens to hundreds of 2.5-D linear integrations for each value of λ⊥ [see259

Fruman and Achatz , 2012, for more details]. An alternative approach, used by Klaassen260

and Peltier [1985] for the related problem of secondary instabilities in Kelvin-Helmholtz261

billows, is to neglect the time dependence of the basic state and calculate secondary262

normal modes, but such an implicit assumption of time-scale separation is not necessary263

for computing singular vectors.264

The optimization time used for the calculation of the secondary singular vectors must265

necessarily be relatively short, because if at the optimization time the 2.5-D solution has266

already become turbulent and filamented, the fastest growing linear modes will be domi-267

nated by very small-scale shear instabilities which would quickly saturate in a nonlinear268

simulation and in any case are not well resolved by the numerics.269

The final step is to perform three-dimensional simulations initialized with the sum of the270

gravity wave, the primary perturbation associated with the most significant wave decay in271

the 2.5-D simulations, and the initial condition of a leading secondary perturbation. The272
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wavelengths of the primary wave and the perturbations determine the size of the triply-273

periodic domain. The required grid size ∆ depends on the intensity of the turbulence274

generated during the breaking process and the corresponding Kolmogorov length275

η = min
(
ν3/4ϵ

−1/4
k

)
, (16)

where the minimum is over the computational domain, by the condition ∆ < πη [dis-276

cussed by Yamazaki et al., 2002, for the case of isotropic turbulence]. Since the resolved277

dissipation rate ϵk in turn depends on the grid resolution, the necessary grid resolution278

must be found by repeated simulations with increasingly fine meshes until the maximum279

dissipation rate does not change and the condition ∆ < πη is fulfilled. The results of the280

3-D DNS are compared with those of the 2.5-D simulations in terms of the time-dependent281

projection of the full solution onto the basic wave, the global-mean dissipation of kinetic282

and potential energy in the system and the streamwise-spanwise-averaged energy spectra.283

284

4. Test Cases

Results are presented for three test cases: two low-frequency inertia-gravity waves285

(IGW), one of amplitude above and the other of amplitude below the static stability286

threshold, and a statically unstable high-frequency gravity wave (HGW). All waves have287

wavelength 3 km and in all three cases, the f -plane is centred at 70N (f = 1.4 × 10−4
288

s) and the constant Brunt-Väisälä frequency of N = 2 × 10−2 s−1 is used. A value of289

1 m2s−1, realistic for the upper mesosphere, is used for the kinematic viscosity ν and290

thermal diffusivity µ.291
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The low-frequency test cases use an IGW with propagation angle Θ = 89.5◦, corre-292

sponding to a period of 8 hours and phase speed 0.1 ms−1. Case I is a statically unstable293

wave with initial amplitude a0 ≡ |a(t0)| = 1.2, and case II is a statically and dynamically294

stable wave with a0 = 0.86. The basic wave for case III is a statically unstable HGW with295

angle of phase-propagation Θ = 70◦ and initial amplitude a0 = 1.2. It has a period of 15296

minutes and phase speed 3.3 ms−1. Due to its short period and small horizontal spatial297

scale, rotational effects do not play an important role in the dynamics of the HGW.298

The Reynolds number, defined following Fritts and Wang [2013] as Re ≡ λ2
zN/2πν,299

where λz is the vertical wavelength of the wave, is about 28000 for cases I and II and300

about 25000 for case III.301

The atmosphere and wave parameters for the three test cases are summarized in tables302

1 and 2.303

5. Numerical Methods

The 2.5-D nonlinear simulations and the linear integrations required for determining304

the primary and secondary instability modes are performed with the numerical models305

developed by Achatz [2005, 2007a] and Fruman and Achatz [2012].306

As described in section 3.1 and in Achatz [2005], primary perturbations in the form of307

normal modes are computed using the one-dimensional linear system (6), constructed by308

linearizing (2) about (3), and substituting the ansatz (8). The independent variables are309

the real and imaginary parts of û′
ξ, v̂

′, ŵ′
ζ , and b̂′ evaluated on a discretized ϕ-axis (ϕ being310

the phase of the wave). Singular vectors additionally require the corresponding adjoint311

model, which was developed using the TAMC utility [Giering and Kaminski , 1998]. The312

time integration is performed using a fourth-order Runge–Kutta scheme for the first two313
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time steps and a third-order Adams–Bashforth scheme for the rest [see Durran, 2010,314

§2.4].315

The 2.5-D nonlinear simulations are performed at high enough resolution to resolve316

scales down to the Kolmogorov scale, here a few metres. The time integration of the317

system (2) is performed using the third-order Runge–Kutta scheme of Williamson [1980].318

The secondary singular vectors are computed using a two-dimensional model to solve319

the system (13) with solutions of the form (15) inserted. The dependent variables are the320

real and imaginary parts of û′′
∥, v̂

′′
⊥, ŵ

′′
ζ , and b̂′′ evaluated on a discrete x∥-ϕ grid. Again,321

the corresponding adjoint model required for finding singular vectors was developed with322

the help of TAMC.323

The 3-D DNS are performed with the INCA model [http://www.inca-cfd.com; for de-324

tails see Remmler and Hickel , 2012, 2013] which solves the Boussinesq equations by means325

of a finite-volume fractional-step method in a triply-periodic domain. For time advance-326

ment the explicit third-order Runge-Kutta scheme of Shu [1988] is used. The time-step327

is dynamically adapted to satisfy a Courant–Friedrichs–Lewy condition. The spatial dis-328

cretization is based on non-dissipative central schemes with 4th order accuracy for the329

advective terms and 2nd order accuracy for the diffusive terms and the pressure Poisson-330

equation solver.331

For all models, the spatial discretization is a staggered one-, two- or three-dimensional C332

grid, with each velocity component evaluated at a point displaced by one half grid interval333

in the corresponding direction relative to the buoyancy and pressure. Eigenvalues for the334

primary and secondary instability analyses are computed iteratively using a variant of the335

Arnoldi process with the Fortran library ARPACK [Lehoucq et al., 1998].336
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In the one- and two-dimensional models, the discrete pressure Poisson equation (ob-337

tained by setting the time derivative of the divergence constraint (2c) to zero) is solved338

using the discrete Fourier Transform. For the 3-D multi-block simulations, the Poisson339

equation is solved by a Krylov subspace solver with algebraic-multigrid preconditioning.340

See appendix C for the computing resources required for the 3-D DNS and the technical341

specifications of the machines used to perform them.342

6. Results

6.1. Case I: Statically unstable IGW

The first test case is a statically unstable inertia-gravity wave with initial amplitude343

a0 = 1.2, propagation angle 89.5◦ and wavelength 3 km. The wave period is 8 hours and344

the phase speed is 0.1 ms−1.345

Figure 2a shows the five-minute growth factors for the leading normal modes as a346

function of perturbation wavelength λ∥ ≡ 2π(k2
ξ + k2

y)
−1/2 and orientation angle α ≡347

tan−1(ky/kξ). The peaks in the growth factor occur for the limiting cases of parallel (α =348

0) and transverse (α = 90◦) perturbations. Their spatial structure can be gleaned from349

figure 2d, showing the perturbation energy density as a function of ϕ. The perturbations350

are normalized such that the ratio A1 of the maximum perturbation energy density in the351

domain to the (uniform) energy density in the basic state is 0.05. The faster growing of the352

two modes (indeed the fastest mode overall) is the leading parallel normal mode. It has353

very short wavelength (316 m) and its energy is very localized near the level of maximum354

static instability ϕ = 3π/2. The leading transverse normal mode has wavelength longer355

than that of the original wave (λ∥ = 3.981 km) and its energy is distributed throughout356

the domain.357
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Figure 2g shows the projection of the 2.5-D nonlinear solution on the original grav-358

ity wave as a function of time for simulations initialized with the wave plus either the359

leading parallel or the leading transverse normal mode, as well as the range of results360

from ensembles of simulations with additional small amplitude random noise (white noise361

smoothed with a running-mean with window of width 50 m in the x∥ and ζ directions).362

For comparison, the curve showing the viscous amplitude decay of the unperturbed wave363

(see Eq. 5) is plotted with a dash-dot line. Despite the smaller linear growth rate of364

the initial perturbation, the wave perturbed by the transverse normal mode decays more365

than the wave perturbed by the parallel normal mode. The wave breaking lasts on the366

order of one half of a wave period and involves intermittent sharp drops in amplitude367

(these correspond to “bursts” of enhanced total energy dissipation, discussed below, see368

figure 6). The intermittency seems to be associated with the phase-propagation of the369

wave (especially the layer of weakest static stability) through the inhomogeneous field of370

turbulence excited by the initial instability. Because it showed the most significant wave371

breaking, we focus on the simulation initialized with the transverse normal mode for the372

secondary instability analysis and 3-D DNS.373

Figure 3 shows the growth factors of the leading five-minute secondary singular vectors374

versus perturbation wavelength λ⊥. Also shown are the five-minute growth factors for an375

ensemble of linear integrations initialized with a random perturbation with a k−5/3 energy376

spectrum. The ensemble mean has a peak near λ⊥ = 400 m. The leading secondary377

singular vector has a somewhat longer wavelength, but for λ⊥ > 400 m, the growth factor378

does not change much with wavelength. The λ⊥ = 400 m singular vector was therefore379

used to initialize the 3-D DNS. Figure 4 shows the structure of the real part of the ŵ′′
ζ380

D R A F T September 17, 2014, 3:51pm D R A F T



FRUMAN ET AL.: DNS OF BREAKING INERTIA-GRAVITY WAVES X - 21

field of the 400 m secondary singular vector at the initial and optimization time (τ = 5381

minutes) plotted over the time-dependent basic state velocity and buoyancy fields. Note382

that the energy associated with the secondary singular vector – like the parallel primary383

normal mode – is initially concentrated near the level of maximum negative basic-state384

buoyancy gradient. Unlike the primary normal mode, the structure of the singular vector385

evolves with time to extract most efficiently both potential energy (through interaction386

with the buoyancy gradient) and kinetic energy (through interaction with the wind shear)387

from the basic state. At the optimization time, the region of maximum energy density388

in the secondary singular vector straddles the line of maximum V⊥ in the basic state. It389

is growing through the Orr mechanism associated with shear in the background velocity390

component parallel to the direction in which the perturbation varies (in this case y⊥). See391

Fruman and Achatz [2012] for details, in particular their figures 8 and 9.392

3-D DNS initialized with the IGW (λ = 3 km), the leading transverse primary normal393

mode (λ∥ = 3.981 km), and the leading secondary singular vector with λ⊥ = 400 m394

were run with a grid spacing ∆ of about 3 m (full resolution) and 6 m (coarse) in all395

three directions. The amplitude for the secondary singular vector A2, defined here as396

the maximum perturbation energy density divided by the maximum basic-state energy397

density, was 0.02. It was shown by Remmler et al. [2013] that only in the fully resolved398

simulation was the Kolmogorov length never smaller than ∆/π but that the results of the399

two simulations were otherwise extremely similar (hence grid-converged). Figure 5 shows400

the initial buoyancy field from the full resolution simulation and a snapshot at t = 695 s of401

the buoyancy field together with the kinetic energy dissipation ϵk. At the instant shown,402

very early in the simulation, turbulence has already developed in the upper half of the wave403
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(i.e. the less stable half) and not in the lower half, but the energy density is not strongly404

correlated with the buoyancy gradient (velocity shear has a strong influence). Note that405

the figure is plotted in the reference frame moving with the wave. The decay of the wave406

amplitude with time and the global mean of the total energy dissipation ϵk + ϵp from the407

ensemble of 2.5-D simulations and from the 3-D DNS are shown in figure 6. The initial408

burst of turbulence is more intense in the 3-D DNS, and the wave decays more rapidly.409

On the other hand, in the 2.5-D simulations the initial turbulence is more sustained – the410

energy decay rate is greater for t & 30 minutes, and the total reduction in wave amplitude411

over the length of the whole simulation is greater. Figure 7 shows the streamwise and412

spanwise averaged total energy dissipation as a function of ζ and time from the fully413

resolved 3-D DNS and the 2.5-D simulations without additional noise. Again, the plot is414

in the reference frame moving with the phase velocity of the wave. In the first 40 minutes415

of the 3-D simulation the turbulent dissipation is distributed throughout the domain416

after which it dies out in the statically stable half. In the 2.5-D simulation dissipation417

is sustained also in the stable half. In analysing 2.5-D simulations of a similar unstable418

IGW, Achatz [2005, 2007a] attributed the dissipation in the stable region to small-scale419

waves propagating away from the unstable region and encountering a critical level. After420

about one half of a wave period (about 4 hours), there is an episode of enhanced energy421

dissipation in the 3-D DNS and a corresponding dip in the wave amplitude (cf. figure 6).422

At this time the point of minimum static stability in the original wave has propagated423

down to the level initially occupied by the most stable point. The dashed black line in424

figure 7 represents a point fixed in space. Evidently residual turbulence in the stable part425

of the wave left over from the early phase of the breaking is stirred up when it interacts426
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with the unstable part of the wave. This is discussed in more depth in Remmler et al.427

[2013]. The dark-grey contours in figure 7 show the isoline Ri = 1/4, where428

Ri =
N2 + ∂b/∂z

(∂u/∂z)2 + (∂v/∂z)2
(17)

is the Richardson number (the overbars indicate the streamwise-spanwise mean,429

u = u∥ cosα sinΘ− v⊥ sinα sinΘ + wζ cosΘ (18a)

v = u∥ sinα+ v⊥ cosα (18b)

are the horizontal velocity components in the Earth frame, and430

∂

∂z
= − cosα cosΘ

∂

∂x∥
+ sinα cosΘ

∂

∂y⊥
+ sinΘ

∂

∂ζ
(19)

is the vertical derivative in the Earth frame). Most of the dissipation occurs in regions of431

Ri < 1/4. This does not necessarily indicate a causal relationship (along the lines of a432

Kelvin-Helmholtz type instability) since turbulence necessarily entails large local velocity433

shear, which implies small values of Ri.434

Figure 8 shows the streamwise and spanwise averaged energy spectra at times of peak435

energy dissipation in the 2.5-D (ensemble) and coarse resolution 3-D simulations and436

near the end of the simulations. Also shown are the spectra from the initial conditions,437

which are identical in 2.5-D and 3-D except for the effect of the secondary singular vector438

perturbation. At the moment of maximum energy dissipation in 3-D (0.39 hours), the439

2.5-D and 3-D spectra are very similar, both showing energy having moved to small scales440

and a k−5/3 inertial range forming, characteristic of 3-D isotropic turbulence. The 3-D441

spectrum shows more energy at the smallest scales, which is what one would expect given442

it has more possibilities for vortex tilting and stretching and therefore a more efficient443

downscale energy cascade.444
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The spectra at the time of the second burst of dissipation in 2.5-D (1.39 hours) are445

quite different in 2.5-D and 3-D. There is much more energy in the smaller scales in the446

2.5-D simulation, the 3-D simulation having “burned itself out” more quickly. The energy447

in the largest scale (which contains the original wave) is, however, almost the same in the448

two simulations. Both of these observations are consistent with figure 6: the dissipation449

at 1.39 hours is much less in 3-D (right panel), but the graphs of the projection onto the450

IGW intersect at about that time (left panel).451

The 2.5-D spectra at 1.39 hours exhibit a clear k−3 inertial range behaviour. This spec-452

tral slope has been found in observations of the atmosphere [Cot , 2001] and in numerical453

studies [e.g. Carnevale et al., 2001; Brethouwer et al., 2007; Remmler and Hickel , 2013]454

to be characteristic of the “buoyancy range” in stratified turbulence. The 3-D spectral455

slope at the same time is something in between k−3 and k−5/3, representing neither com-456

pletely isotropic nor fully stratified turbulence. In the 2.5-D ensemble the spectra remain457

close to k−3 in the range between 100 m and 1000 m until about t ≈ 4.5 hours (not458

shown), which is about as long as the turbulent dissipation persists in the stable half of459

the domain (compare with figure 7). This causes the turbulence to be, on average, much460

more strongly affected by stratification than in the 3-D DNS, where significant turbulence461

persists only in the unstable half of the domain. Consequently, the spectral slope in the462

3-D DNS changes multiple times between k−5/3 in times of strong turbulent dissipation463

(t < 2 h, t ≈ 4 hours, t ≈ 5 hours) and k−3 in times of weak dissipation (t ≈ 3.5 hours,464

t ≈ 4.5 hours, t > 6 hours).465

At the end of the simulations (11.11 hours), the turbulence has died out and there is466

very little energy in the smaller scales. Notice that there is a wide variation in the spectra467
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between 2.5-D ensemble members. Indeed after the first burst of turbulence the ensemble468

members begin to diverge in all three of the diagnostics presented. It is natural that such469

a long simulation of a highly nonlinear process like a breaking wave be sensitive to the470

addition of initial noise.471

6.2. Case II: Statically stable IGW

The second case is a statically stable inertia-gravity wave, identical to the first case472

but with a0 = 0.86. The Richardson number RiIGW in the wave solution (Eq. 9) is473

greater than 1/4, and the linear model has been used to verify that no exponentially474

growing normal mode solutions exist for any perturbation wavelength or orientation (not475

shown). As such, the primary perturbation analysis in this case involves calculating the476

leading singular vectors for a range of perturbation wavelengths and orientations. An477

optimization time of τ = 7.5 minutes, chosen a posteriori, ensures that the primary and478

secondary singular vector analyses both yield a finite scale for the most amplified mode.479

The singular vector growth factors as functions of λ∥ and α are shown in figure 2b. Again480

the leading parallel perturbation has shorter wavelength (λ∥ = 0.638 km) than the leading481

transverse perturbation (λ∥ = 2.115 km) and a larger growth factor, but only slightly so.482

Figure 2e shows the energy density as a function of ϕ in the initial condition for the483

2.5-D nonlinear simulations for the parallel and transverse singular vectors. Again the484

transverse perturbation is less focussed near the level of lowest static stability in the485

original wave. The amplitude A1 of the initial perturbation was chosen such that the486

maximum energy density in the perturbation is 10% that of the original wave. Unlike a487

normal mode, which in the linear regime has a fixed spatial structure as its amplitude488

grows and oscillates, the structure of a singular vector changes with time (since its con-489
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stituent normal modes each have a different decay rate and frequency). The choice of490

initial amplitude is therefore more consequential here in that it affects the spatial struc-491

ture of the solution at the moment when nonlinear effects become important. Figure 2h492

shows the amplitude as a function of time for the 2.5-D simulations initialized with the493

leading parallel and transverse singular vectors, including results for an ensemble of sim-494

ulations further perturbed by small-amplitude noise at t = 0. The wave perturbed by the495

transverse singular vector decays more than the wave perturbed by the parallel singular496

vector. The breaking is modest in general in this case, as the original wave is statically497

and dynamically stable.498

Again we chose the transverse perturbation for the rest of the analysis. Figure 9 shows499

the 7.5-minute growth factors for the leading secondary singular vectors as functions of500

perturbation wavelength λ⊥. The most amplifying perturbation has wavelength λ⊥ = 300501

m. Also shown (filled diamonds) are the growth factors of the trailing singular vectors for502

λ⊥ = 300 m and λ⊥ = 1800 m (where the growth factor curve reaches a local maximum),503

and the growth factors for λ⊥ = ∞ (dashed lines). In the right panel are shown the504

growth factors from ensembles of randomly initialized (with a k−5/3 energy spectrum)505

linear integrations with a range of perturbation wavelengths. The ensemble mean of the506

latter also has peaks near λ⊥ = 300 m and λ⊥ = 1800 m, suggesting that the secondary507

singular vectors are representative of modes likely to emerge spontaneously. Figure 10508

shows the spatial structure of the secondary singular vector with λ⊥ = 300 m at the509

initial and optimization times. Notice that the spatial scale in the (x∥, ζ) plane roughly510

matches the wavelength (300 m) in the y⊥ direction. This seems to be a generic feature511

of the early-time unstable modes [primary and secondary, see Fruman and Achatz , 2012].512
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As in the case of the unstable IGW, it is through interaction with the V⊥ component of513

the basic state that the secondary singular vector is growing at the optimization time.514

The initial condition for the 3-D DNS is composed of the original IGW (λ = 3 km), the515

leading 7.5-minute transverse primary singular vector (λ∥ = 2.115 km), and the leading516

7.5-minute secondary singular vector (λ⊥ = 300 m). Simulations were run with average517

grid spacing ∆ ≈ 3 m (“fine”) and ∆ ≈ 4.2 m (“coarse”) (see centre column of table518

3). The initial buoyancy field from the fine 3-D DNS is shown in figure 11a. Note519

that although the base wave is statically stable, due to the finite amplitude primary520

perturbation there is a region of static instability at the level of weakest stability in the521

base wave (as evidenced by the fold in the b = −0.03 ms−2 surface of the initial condition).522

The temporal development of the flow field is visualized in figure 11b-f by contours of523

streamwise-averaged buoyancy and kinetic energy dissipation ϵk. The perturbation grows524

during the first minutes and generates turbulence in the least stable part of the wave. The525

turbulence remains confined to this region and is dissipated quickly. The peak dissipation526

is reached at t = 11 min and after 40 min the turbulence has basically vanished. During527

this period of turbulent decay some overturning occurs in the most stable part of the528

wave, similar to the case of the unstable IGW. Here, however, the overturning is too weak529

to create a negative vertical buoyancy gradient and breaking. It is thus simply dissipated530

by molecular heat transport.531

Figure 12 shows the evolution of the wave amplitude and total energy dissipation from532

the 3-D DNS and the ensemble of 2.5-D simulations. The decay (and partial rebound) of533

the wave amplitude is very similar in 3-D and 2.5-D, but the onset of turbulence and the534

associated energy dissipation occur earlier in 3-D. In the lower portion of the left panel535
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of figure 12 is shown the maximum and mean perturbation energy density from a linear536

2.5-D integration initialized with the primary singular vector. The mean energy in the537

singular vector is maximum at the optimization time and then decays. The drops in the538

maximum perturbation energy density from the linear integration approximately coincide539

in time with the rebounds of the IGW amplitude from the nonlinear simulations. The540

spatial distribution of the dissipation (figure 13) is very similar in 2.5-D and 3-D. The541

energy dissipation is strongly correlated with the region of Ri < 1/4 (bounded by the542

dark-grey contour), particularly in the upper half of the domain in the 2.5-D simulation.543

The base wave in this case being stable, it is not surprising that the peak in global mean544

dissipation is weaker than in case I (compare figures 6 and 12). Nevertheless, the kinetic545

energy dissipation can be locally more intense during the early phase of the simulation546

(compare the colored contours in figures 5 and 11). This can be attributed to the difference547

between a primary normal mode, used in case I, and a primary singular vector with short548

optimization time, used in case II. The latter extracts maximum energy in the early phase549

of the simulation.550

The Kolmogorov length as a function of time from the two 3-D DNS is plotted in figure551

14a. In the fine simulation η is always larger than ∆/π (indicated by the horizontal552

line), so all turbulence scales are resolved. Although η is briefly below ∆/π in the coarse553

simulation, the results are almost indistinguishable from the fine simulation (compare554

the projection and dissipation diagnostics shown in figure 12), so the simulations are555

grid-converged.556

6.3. Case III: Statically unstable HGW
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The third and final test case is the statically unstable (a0 = 1.2) high frequency gravity557

wave (Θ = 70◦, period 15 minutes, phase speed 3.3 ms−1).558

The five-minute growth factors of the leading normal modes for a range of wavelengths λ∥559

and orientation angles α are shown in figure 2c. The fastest growing normal mode overall560

is the leading transverse (α = 90◦) mode with λ∥ = 2929 m. The wavelength of maximum561

growth rate is not very sensitive in this case to the orientation of the perturbation, with562

the peak for most orientation angles near λ∥ = 3 km (which happens to be the wavelength563

of the original wave). The leading parallel (α = 0) normal mode is an exception, having564

a shorter wavelength of λ∥ = 1589 m. Figure 2c is comparable to figure 5 of Fritts et al.565

[2013] showing growth rates computed using the Floquet theory method of Lombard and566

Riley [1996] for a HGW with a0 = 1.1. For example the growth factor of the leading567

transverse normal modes (α = 90, or ki = 0 in their notation) exhibits multiple peaks568

with the largest growth factor for primary perturbation wavelength close to the wavelength569

of the original wave.570

The energy density in the leading transverse and parallel normal modes and the wave571

amplitude decay in the respectively initialized 2.5-D simulations are shown in panels f and572

i of figure 2. The high frequency and significant horizontal gradients in the HGW make573

it less similar to a steady stratified shear flow than the IGW. It is not surprising then574

that the energy density in the leading normal modes is not as strongly correlated in space575

with the level of lowest static stability. Once again it is the longer-wavelength transverse576

normal mode that leads to the most profound breaking of the original wave. The HGW577

decays more completely and more vigorously than does the unstable IGW (cf. figure 2g);578

its amplitude is reduced to about 0.3 within 30 minutes.579
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The five-minute growth factors of the leading secondary singular vectors as functions of580

perturbation wavelength λ⊥ are shown in figure 15. The basic state is the 2.5-D simulation581

initialized with the wave and the leading transverse primary normal mode. Also shown are582

the five-minute growth factors of randomly initialized integrations. There is no clear peak583

in either case, but the growth factor does not increase much beyond λ⊥ = 3 km. Figure584

16 shows the structure of the secondary singular vector with λ⊥ = 3 km at the initial585

and optimization times. Notice that the singular vector apears to have “propagated” up586

through the domain. In fact it is the original wave (and hence the entire reference frame)587

that has propagated downward about one third of a wavelength. Notice also that unlike for588

the elliptically polarized IGW, the transverse velocity in the basic state (U∥ in the twice-589

rotated reference frame) is initially about an order of magnitude weaker than the parallel590

(V⊥) component but at the optimization time it has grown due to interaction with the591

velocity shear in the HGW. Achatz [2007b] found that transverse primary perturbations592

to statically unstable HGW grow more through interaction with the shear in the wave593

than with the unstable buoyancy gradient.594

The 3-D DNS was initialized with the original HGW (λ = 3 km), the leading transverse595

primary normal mode (λ∥ = 2.929 km) and the 5-minute secondary singular vector with596

λ⊥ = 3 km. Three simulations were performed, with grid spacing ∆ of 1.9 m (fine resolu-597

tion), 3.9 m (coarse 1) and 7.8 m (coarse 2). The initial buoyancy field from the fine reso-598

lution simulation is shown in figure 17 together with snapshots of the streamwise-averaged599

buoyancy and kinetic energy dissipation at a sequence of later times. The dissipation at600

early times is localized where the secondary singular vector energy is concentrated (cf.601

figure 16) but soon fills the domain. Comparisons of the amplitude decay and total energy602
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dissipation are shown in figure 18. Both diagnostics are quite similar in 2.5-D and 3-D,603

although as in the previous cases the onset of turbulent dissipation occurs slightly earlier604

in 3-D. The distribution in space and time of the energy dissipation from the medium605

resolution (coarse 1) run is shown in figure 19. The regions of intense energy dissipation606

are approximately fixed in space (parallel to the heavy dashed black lines), particularly607

in the 2.5-D simulation.608

Spanwise and streamwise averaged energy spectra from the 2.5-D ensemble and the609

medium (coarse 1) resolution 3-D DNS are plotted in figure 20 (computation of spectra610

for the fine simulation was too memory-intensive). Spectra from two times during the611

period of strong energy dissipation (15 and 30 minutes) and at the end of the simulation612

are shown. During the period of maximum turbulence, energy moves to smaller scales613

and close to a k−5/3 spectrum forms. At the end of the simulation the spectrum has614

steepened as the energy in smaller scales has been lost to friction and thermal diffusion.615

The cascade of energy to the smallest scales is more efficient in the 3-D simulations, but616

the difference between the 2.5-D and 3-D spectra seems to be small in this case. Like in617

the intermediate-time spectra from case I (figure 8), the spectra at 90 minutes are close618

to the k−3 spectrum characteristic of anisotropic, buoyancy-dominated turbulence.619

There is much less variation between ensemble members in the dissipation and spectra620

diagnostics than in the (much longer) unstable IGW simulations, and in the projection621

diagnostic there is much less variation relative to the amount of decay.622

The Kolmogorov length η from the 3-D DNS with coarse, medium and fine resolution is623

plotted as a function of time in figure 14b. In the fine simulation η is always approximately624

equal to or larger than ∆/π (indicated by the horizontal lines) and can hence be considered625
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fully resolved. Nevertheless, there is not much difference in terms of the wave amplitude626

and dissipation rates (figure 18) in the intense early phase (up to about 15 minutes) of the627

fine and coarse 1 simulations, so it is probably acceptable to use the latter for computing628

the spectra for figure 20. The coarse 2 simulation, on the other hand, has a slightly lower629

dissipation peak than the other two and is thus not quite resolving the smallest relevant630

scales.631

7. Conclusion

A systematic but flexible method for constructing an efficient three-dimensional (3D)632

direct numerical simulation (DNS) of a breaking inertia-gravity wave has been presented.633

The method consists of four stages, which can be summarized as follows:634

(1) Normal mode (NM) or singular vector (SV) analysis of the Boussinesq equations635

linearized about the inertia-gravity wave solution (Eq. 6). This entails a large number of636

1-dimensional linear calculations in the once-rotated coordinate system (ξ, y, ζ).637

(2) “2.5-dimensional” (2.5-D) nonlinear simulation of the full Boussinesq equations (Eq.638

2) initialized with the inertia-gravity wave plus a leading NM or SV from step 1. These639

simulations are performed in the twice rotated coordinate system (x∥, y⊥, ζ) and are sup-640

plemented by ensembles of simulations with additional small-amplitude initial noise.641

(3) SV analysis on the full equations linearized about the particular time-dependent642

2.5-D solution from step 2 that resulted in the greatest reduction in the gravity-wave643

amplitude (using Eq. 13)644
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(4) 3-D DNS initialized with the inertia-gravity wave, the leading NM or SV from step645

1 and a leading secondary SV from step 3. The dimensions of the integration domain are646

equal to the wavelengths of the wave and the leading perturbations.647

The characteristics of the initial wave are completely determined by the atmosphere648

parameters N and f and the wavelength and propagation angle Θ of the wave (see tables649

1 and 2). The primary instability structures (NM or SV) further depend on the viscosity650

ν and diffusivity µ and are characterized by the orientation angle α and wavelength λ∥,651

and in the case of the singular vector the optimization time τ . The secondary singular652

vectors are characterized by their wavelength λ⊥ and the optimization time, which may653

or may not be the same as that used for computing the primary singular vector.654

The method has been applied to three test cases, resulting in the following initial con-655

ditions for the 3-D DNS:656

(I) A statically unstable inertia-gravity wave (IGW) with wavelength λ = 3 km, prop-657

agation angle Θ = 89.5◦ (period 8 hours, phase speed 0.1 ms−1), and amplitude a0 = 1.2658

(streamwise velocity amplitude ∆uξ = 14.6 ms−1) perturbed by the leading transverse659

primary normal mode with λ∥ = 3.9 km and the leading 5-minute secondary singular660

vector with λ⊥ = 400 m.661

(II) A statically stable IGW with parameters identical to case I except the amplitude662

a0 = 0.86 (∆uξ = 10.4 ms−1), perturbed by the leading 7.5-minute transverse primary663

singular vector with λ∥ = 2.115 km and the leading 7.5-minute secondary singular vector664

with λ⊥ = 300 m.665

(III) A statically unstable high-frequency gravity wave (HGW) with wavelength λ = 3666

km, propagation angle Θ = 70◦ (period 15 minutes, phase speed 3.3 ms−1) and amplitude667
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a0 = 1.2 (∆uξ = 12.2 ms−1) perturbed by the leading transverse normal mode with668

λ∥ = 2.9 km and the leading secondary singular vector with λ⊥ = 3 km.669

The breaking of the unstable IGW [case I, also discussed in Remmler et al., 2013] was670

perhaps the richest of the three cases. The turbulence and wave decay was intermittent671

and persisted for almost the period of the wave (8 hours). The preliminary linear insta-672

bility analysis and nonlinear 2.5-D simulations indicated that this case could be treated673

in a domain relatively narrow in the y⊥ direction, making such a long integration possi-674

ble. After the first approximately 30 minutes, most of the energy dissipation in the 3-D675

simulation occurred near the level of static instability in the original wave, while in 2.5-D676

there is significant energy dissipation also in the stable part of the wave. In general it677

was the only case with significant differences between the 2.5-D and 3-D DNS and with678

significant variation between members of the ensemble in 2.5-D.679

The unstable HGW (case III) resulted in a rapid and almost total breakdown of the680

wave, its amplitude decaying to about 30% of the threshold amplitude for static instability681

within just over a single wave period (15 minutes). The breaking of this wave seems to682

be relatively isotropic, with scales in all three directions comparable to the wavelength of683

the original wave, and the dissipation occurs in one powerful burst (as opposed to being684

intermittent) and does not appear to be very spatially correlated with the distributions685

of velocity and buoyancy in the original wave. The results of this test case were similar to686

those of Fritts et al. [2009a, b]. Although those authors did not include the Coriolis force687

in their calculations, it plays almost no role in the dynamics of high-frequency waves.688

Probably the least interesting of the three cases (from the point of view of wave breaking)689

was the statically stable IGW (case II). The wave amplitude is reduced by about 5%, from690
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a0 = 0.86 to about |a| = 0.82 before rebounding slightly after the optimization time of691

the primary singular vector (at which time its energy – in the linear solution – begins to692

decrease). Achatz [2007a] discussed a similar case (but for a wave with 6 km wavelength)693

and found that perturbation by a primary SV with ten times larger relative amplitude694

than that considered here could lead, in nonlinear simulations, to significant reduction in695

the amplitude of the IGW. Such a large perturbation, however, makes the initial condition696

locally approach or exceed the static instability threshold.697

Overall the results of the 2.5-D simulations are remarkably similar to those of the 3-D698

DNS in terms of the projection and resolved-energy dissipation diagnostics. The initial699

phase of wave breaking tends to be more rapid and more intense in the 3-D simulations –700

understandable since it provides more degrees of freedom and avenues to exchange energy701

between spatial scales. The spatial and temporal distribution of the energy dissipation702

are similar.703

A possible objection to the approach advocated here is that the computational domain704

and initial condition are too carefully chosen for the results to be relevant to a wave break-705

ing spontaneously in nature. For that reason, Remmler et al. [2013] performed additional706

simulations with the inertia-gravity wave from case I, in domains half as wide (200 m)707

and twice as wide (800 m) in the y⊥ direction and with small amplitude noise instead of708

the secondary singular vector. It was found that the breaking of the wave in the narrow709

domain was more like in the 2.5-D simulations, while the breaking in the wider domain710

was more like the optimally initialized 3-D DNS, suggesting that the optimal initializa-711

tion might be a closer approximation to nature than a randomly initialized simulation in712
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a bounded domain. Since the breaking of the HGW (case III) was so similar in 2.5-D and713

in 3-D, this test was not deemed necessary.714

While simulation of realistic breaking waves in the upper mesosphere is becom-715

ing tractable with improved computing technology, it remains an expensive and time-716

consuming undertaking and is still out of reach for waves in the ocean and most of the717

atmosphere. For that one must rely on large-eddy simulation (LES) models. An immedi-718

ate application of the results presented here is in the validation of LES schemes against a719

reliable properly resolved solution. The LES can then serve as an essential intermediate720

tool for the testing of gravity-wave drag parameterizations, which are needed by every721

weather-forecast and climate model, or simply for extending the parameter range (higher722

Reynolds numbers, larger simulation domains) that can be explored in monochromatic723

wave-breaking studies of the type presented here. We would be happy to share the data724

from the 3-D DNS with other researchers. Summaries of the data will be made available725

on the World Wide Web.726

Appendix A: Normal Modes and Singular Vectors

Consider a system of coupled linear ordinary differential equations727

d

dt
x = AAAx, (A1)

where x is a vector and AAA is a matrix which may depend on time. In the context of the728

primary instability analysis (section 3.1), x consists of the real and imaginary parts of729

the perturbation velocity and buoyancy amplitudes at a discrete set of ϕ values (where730

ϕ ∈ (0, 2π) is the phase of the original gravity wave) and AAA depends on ϕ through the basic731

D R A F T September 17, 2014, 3:51pm D R A F T



FRUMAN ET AL.: DNS OF BREAKING INERTIA-GRAVITY WAVES X - 37

state fields but is independent of time. For the secondary instability analysis (section 3.2),732

x consists of the same fields at discrete points on the (x∥, ϕ) grid and AAA is time dependent.733

The normal modes of (A1) are solutions of the form734

x(t) = x0e
γt, (A2)

where x0 is an eigenvector of AAA and γ the corresponding eigenvalue. The leading normal735

mode is the one with the largest growth rate (the real part of γ). In general AAA is a very736

large matrix, and one is interested only in the fastest growing normal modes, so it is737

convenient to use an iterative eigenvector solution method like the Arnoldi method, but738

these methods find the eigenvalue with the largest magnitude rather than the eigenvalue739

with the largest real part. The answer is to instead find the eigenvalues of the propagator740

matrix Φτ , defined by741

x(τ) = Φτx(0). (A3)

When AAA is time independent, Φτ ≡ exp(τAAA) and has the same eigenvectors as AAA and742

eigenvalues of the form Γ = exp(γτ). Since |Γ| = exp(Re(γ)t), the eigenvalues of Φτ with743

the largest magnitude correspond to the eigenvalues of AAA with the largest real part. Note744

that the matrix Φτ need not be known explicitly in order to calculate its eigenvalues and745

eigenvectors using a tool such as the ARPACK library [Lehoucq et al., 1998]. One need746

only have a way of calculating x(τ) from x0, i.e. the linear model.747

It is often required to find the initial perturbations x0 for which the growth factor after748

time τ ,749

σ ≡

√
x(τ)†MMMx(τ)

x†
0MMMx0

=

√
x†
0Φ

†
τMMMΦτx0

x†
0MMMx0

(A4)

is maximized. HereMMM is a positive-definite matrix which defines a norm (such as the total750

energy) and its associated inner product, and x† is the conjugate-transpose of x. It can751
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be shown that σ is maximized when x0 is the eigenvector of the matrix MMM−1Φ†
τMMMΦτ with752

the largest (in magnitude) eigenvalue. The eigenvectors {xk} ofMMM−1Φ†
τMMMΦτ are called the753

singular vectors of the system described by AAA with respect to the optimization time τ .754

It is simpler to find the vectors qk = NNNxk, whereMMM = NNN†NNN is the Cholesky factorization755

of MMM, because the qk satisfy the Hermitian eigenvector equation756

(NNNΦτNNN
−1)†(NNNΦτNNN

−1)qk = σ2qk. (A5)

The singular vectors xk can then be recovered by computing xk = NNN−1qk. In order to757

calculate the qk, both the linear model – to compute y = Φτx – and its adjoint – to758

compute Φ†
τy – are required. In the present study, the adjoint models were constructed759

using the tool TAMC [Giering and Kaminski , 1998].760

When AAA is time-dependent (such as in the calculation of the secondary instabilities),761

the normal mode problem is not well-defined, but singular vectors can be calculated for762

any linear system. Furthermore, since the vectors qk are the eigenvectors of a positive763

definite, Hermitian matrix, they form an orthonormal set. It follows that the singular764

vectors xk are orthonormal with respect to the norm MMM. It is easily shown that they are765

orthogonal also at the optimization time τ , i.e.766

(Φτxj)
†MMM(Φτxk) = x†

jΦ
†
τMMMΦτxk = σ2

kx
†
jMMMxk = δjkσ

2
k. (A6)

767

Appendix B: Projection onto Free Gravity Waves

An important diagnostic quantity for simulations of the breaking of a inertia-gravity768

wave is the projection of the solution onto the inertia-gravity wave as a function of time.769
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See the appendix of Achatz [2007b] for the more general problem of projecting the solution770

onto all free inertia-gravity waves and vortical modes.771

The projection onto just the original inertia-gravity wave may be extracted from the772

streamwise-spanwise mean fields u∥, v⊥, wζ and b, where for the quantity X,773

X(ϕ, t) =
1

λ∥λ⊥

∫ λ⊥

0

∫ λ∥

0

X(x∥, y⊥, ϕ, t)dx∥dy⊥. (B1)

The free linear modes depending only on ζ and t and periodic in ζ with period λ consist774

of the geostrophically balanced vortical modes775

Vn ≡ [u∥, v⊥, wζ , b]
0
n

≡
√
2N√

N2 cos2 Θ+ f 2 sin2Θ
[cosΘ sinα, cosΘ cosα, 0, f sinΘ] exp (inKζ) , (B2)

and the upward and downward propagating inertia-gravity waves776

G±
n ≡ [u∥, v⊥, wζ , b]

±
n

≡
[
i cosα+

f sinΘ

ω± sinα,−i sinα+
f sinΘ

ω± cosα, 0,−N2 cosΘ

ω±

]
exp

[
i
(
nKζ − ω±t

)]
.

(B3)

Here Θ is the angle of phase propagation of the original wave, α is the orientation of the777

primary perturbation, n is an integer, and778

ω± = ±
√

f2 sin2Θ+N2 cos2Θ. (B4)

In addition there is the “mode” W ≡ [u∥, v⊥, wζ , b]
w = [0, 0,

√
2, 0] representing the779

streamwise and spanwise mean of wζ (it follows from the continuity equation averaged780

over x∥ and y⊥ that wζ is independent of ζ).781

It is readily shown that the set {V 0
n , G

+
n , G

−
n ,W}, where n = 1, 2, 3, . . . , forms an or-782

thonormal basis in the energy norm783

||[u∥, v⊥, wζ , b]||2 ≡
1

2λ

∫ λ

0

(
|u∥|2 + |v⊥|2 + |wζ |2 +

|b|2

N2

)
dζ (B5)
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for periodic functions of ζ with period λ. The original inertia-gravity wave, which had784

upward vertical group speed and therefore downward vertical phase speed, is the mode785

G−
1 .786

Defining the discrete Fourier Transform according to787

X̂j =
1

Nζ

Nζ∑
l=1

X l exp

(
−i

2πjl

Nζ

)
, (B6)

where Nζ is the number of grid points in the ζ direction, the (complex) amplitude of the788

inertia-gravity wave at a given time is then the scalar product of the transformed discrete789

fields with G−
1 :790

A(t) =
1

2

(
û∥

∗
1û∥

−
1 + v̂⊥

∗
1v̂⊥

−
1 +

1

N2
b̂∗1b̂

−
1

)
=

1

2

[(
i cosα+

f sinΘ

ω− sinα

)
û∥

∗
1 +

(
−i sinα+

f sinΘ

ω− cosα

)
v̂⊥

∗
1 −

N2 cosΘ

ω− b̂∗1

]
,

(B7)

where [û∥
−
1 , v̂⊥

−
1 , 0, b̂

−
1 ] is the complex amplitude of the mode G−

1 (from Eq. B3). The791

magnitude of the amplitude normalized relative to the threshold for static instability792

|b̂C | = N2/(K cosΘ) is then793

|a(t)| = |b̂−1 |
|b̂C |

|A(t)| = 2 cosΘ sinΘ

(λ/2π)|ω−|
|A(t)|. (B8)

794

Appendix C: Computational resources used for the 3-D DNS

The 3-D direct numerical simulations for the three test cases were performed at different795

high-performance computing centres.796

For the unstable IGW, a resolution of ∆ = 3 m and therefore 172.8 million grid cells were797

required for the solution to be fully resolved. The simulation was run on the NEC SX-9798

vector computer at HLRS in Stuttgart, Germany. A single node of this machine (500 GB799
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memory, 16 vector processors with 100 GFLOP/s peak performance each) had sufficient800

memory to store the complete flow field. Hence we could avoid domain decomposition801

and relied on shared memory parallelization only. The efficient Poisson solver employs a802

discrete Fourier Transform in one direction in combination with a Bi-Conjugate Gradient803

Stabilized (BiCGSTAB) solver [van der Vorst , 1992] in the plane perpendicular to the804

chosen direction. The Fourier Transform converts the three-dimensional problem into a805

set of independent two-dimensional problems, which are solved in parallel. The simulation806

of a flow time of 35 000 s (270 000 time steps) required a wall time of 1100 hours, which807

corresponds to 85.7× 10−9 node-seconds per time step and cell.808

The simulations of the stable IGW were carried out on the LOEWE cluster at CSC809

Frankfurt, Germany. This machine consists of nodes with two AMD Opteron 6172 CPUs810

(12 cores per CPU, 8.4 GFlop/s per core peak performance) and 64 GB memory. The fully811

resolved DNS with 71 million grid cells was decomposed into 192 blocks and simulated on812

eight nodes. The integration up to t = 100 min (38 600 time steps) took 183 hours, i.e.813

1.93× 10−6 node-seconds per time step and cell.814

The simulations of the unstable HGW were the most demanding and were run on the815

Cray XE6 cluster at HLRS Stuttgart, consisting of nodes with two AMD Opteron 6276816

(Interlagos) CPUs (16 cores per CPU, 9.2 GFlop/s per core peak performance) and 32817

GB memory. The fully resolved DNS with 3624 million grid cells was decomposed into818

4096 blocks and simulated on 512 nodes using 8 processor cores per node. The integration819

up to t = 46.2 min (49 460 time steps) required a wall time of about 288 hours. Hence820

the computational performance was 2.96× 10−6 node-seconds per time step and cell.821
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Kinematic viscosity ν 1 m2s−1

Thermal diffusivity µ 1 m2s−1

Latitude for Coriolis parameter ϕC 70 N

Coriolis parameter f 1.37× 10−4 s−1

Brunt-Väisälä frequency N 2× 10−2 s−1

Acceleration due to gravity g 9.81 ms−2

Table 1. Atmosphere parameters.

Case Amplitude Propagation
angle Θ

Primary
perturbation

Secondary
perturbation

I. Unstable
IGW

a0 = 1.2
∆uξ = 14.6 ms−1

∆b = 0.23 ms−2

89.5◦ NM, α = 90◦

λ∥ = 3.98 km
A1 = 0.05

λ⊥ = 0.4 km
A2 = 0.02

II. Stable
IGW

a0 = 0.86
∆uξ = 10.4 ms−1

∆b = 0.16 ms−2

89.5◦ SV, α = 90◦

λ∥ = 2.12 km
A1 = 0.1

λ⊥ = 0.3 km
A2 = 0.01

III. Unstable
HGW

a0 = 1.2
∆uξ = 12.2 ms−1

∆b = 0.24 ms−2

70◦ NM, α = 90◦

λ∥ = 2.93 km
A1 = 0.05

λ⊥ = 3.0 km
A2 = 0.01

Table 2. Parameters of the initial conditions for the 3-D DNS test cases. A1 and A2 are the

amplitudes of the primary and secondary perturbations in terms of the maximum perturbation

energy density compared to the maximum energy density in the basic state. ∆uξ and ∆b are the

amplitudes of the uξ velocity component and buoyancy in the original wave.
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I. Unstable IGW II. Stable IGW III. Unstable HGW

PRIM. INSTAB.

nϕ (∆ζ) 1024 (3 m) 1024 (3 m) 1024 (3 m)
time step ∆t 0.025 s 0.025 s 0.025 s

integration time τ 5 min 7.5 min 5 min

2.5-D DNS

nx∥ × nζ (∆x∥, ∆ζ) 660× 500 (6 m, 6 m) 350× 500 (6 m, 6 m) 500× 500 (6 m, 6 m)
time step ∆t 0.05 s 0.05 s 0.05 s

integration time τ 666 min 60 min 90 min

SECOND. INSTAB.

nx∥ × nϕ (∆x∥, ∆ζ) 128× 512 (31 m, 6 m) 128× 512 (17 m, 6 m) 256× 256 (11 m, 12 m)
time step ∆t 0.05 s 0.05 s 0.05 s

integration time τ 5 min 7.5 min 5 min

COARSE RES. 3-D DNS
nx∥ × ny⊥ × nζ 640 × 64 × 500 512 × 64 × 768 7683 / 3843

cell size ∆ 6.2 m, 6.3 m, 6.0 m 4.1 m, 4.7 m, 3.9 m 3.9 m / 7.8 m
integration time τ 1000 min 100 min 91 min / 157 min

FULL RES. 3-D DNS

nx∥ × ny⊥ × nζ 1350 × 128 × 1000 720 × 96 × 1024 1536 × 1536 × 1536
cell size ∆ 2.9 m, 3.1 m, 3.0 m 2.9 m, 3.1 m, 2.9 m 1.9 m

integration time τ 572 min 100 min 46 min

Table 3. Parameters of numerical calculations of primary and secondary instability growth

factors and of 2.5-D and 3-D direct numerical simulations.
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Figure 1. Rotated coordinate systems for primary and secondary instability analyses [after

Remmler et al., 2013].
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Figure 2. Top row : growth factors of leading primary linear modes as functions of pertur-

bation wavelength and orientation angle: (a) normal modes of unstable IGW; (b) τ = 7.5 min

singular vectors of stable IGW; (c) normal modes of unstable HGW. Middle row : streamwise-

spanwise mean perturbation energy density in initial condition of 2.5-D simulations, normalized

by the mean energy density in the IGW (EIGW ) or HGW (EHGW ), for (d) leading transverse

(α = 90◦) and parallel (α = 0) NM of unstable IGW; (e) leading transverse and parallel SV of

stable IGW; (f) leading transverse and parallel NM of unstable HGW. Shaded regions in panels

(d)-(f) are for reference, indicating levels of maximum (ϕ = π/2) and minimum (ϕ = 3π/2)

static stability in the basic state wave. Bottom row : time dependent projection of 2.5-D nonlin-

ear solution onto the (g) unstable IGW; (h) stable IGW; (i) unstable HGW. Grey-shaded regions

in panels (g)-(i) represent the range of values from integrations with additional small amplitude

initial noise (ensemble average indicated by dashed lines) and dash-dot line represents the viscous

decay of the unperturbed wave.
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Figure 3. Linear growth factors of leading and second-leading 5-minute secondary singular

vectors (left) and of randomly initialized perturbations (right) versus secondary perturbation

wavelength λ⊥ for the unstable IGW perturbed by its leading transverse primary normal mode.

Dashed horizontal lines in left panel are growth factors of leading SV for λ⊥ = ∞; filled diamonds

indicate growth factors at λ⊥ = 400 m. Heavy dashed line in right panel represents ensemble-

mean growth factor at each wavelength.
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Figure 4. Contours of the real part of perturbation vertical velocity amplitude ŵ′′
ζ at

initial (top row) and at optimization (bottom row) times for 5 minute secondary singular vector

superimposed on the basic state buoyancy B (left) and horizontal velocity fields U∥ (centre) and

V⊥ (right) (shading) for statically unstable IGW perturbed by leading transverse normal mode.
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Figure 5. Snapshots of the buoyancy field from fine 3-D DNS (1350 × 128 × 1000 cells) of

the statically unstable IGW: Left : 3-D initial condition with an isosurface at b = −0.02m s−2

(green colour). Right : flow field averaged in the y⊥-direction at t = 11.6min (greyscale contours:

buoyancy, coloured lines: total energy dissipation).

Figure 6. Comparison of wave amplitude decay (left) and total energy dissipation (right) in

2.5-D and 3-D DNS of statically unstable IGW. Dash-dot line indicates amplitude decay due to

laminar viscous decay of the unperturbed wave.
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Figure 7. Spanwise and streamwise averaged total energy dissipation from 3-D (top row) and

2.5-D (bottom row) DNS of unstable IGW. Contours equally spaced on a logarithmic (base 10)

scale. Dashed black line represents a fixed point in the Earth frame. Right panels are close-ups

of first two hours of model time. Solid dark-grey lines represent contours of Ri = 1/4 (see Eq.

17).
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Figure 8. Spanwise and streamwise averaged energy spectra from times of peak energy

dissipation in the 2.5-D and coarse resolution (640 × 64 × 500 cells) 3-D DNS of the unstable

IGW. Shaded regions show the range of values of ensembles of 2.5-D simulations. Also plotted

on all panels are the spectra from the initial conditions of 2.5-D and 3-D simulations.
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Figure 9. As in figure 3 but for optimization time 7.5 minutes and the statically stable IGW

perturbed by its leading transverse singular vector. The filled diamonds mark the growth factors

of the leading twelve (N.B. they come in degenerate pairs) singular vectors for λ⊥ = 300 m and

λ⊥ = 1800 m.
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Figure 10. As in figure 4 but for optimization time τ = 7.5 minutes and the statically stable

IGW perturbed by its leading 7.5-minute transverse primary singular vector.

Figure 11. Snapshots of the buoyancy field from 3-D DNS (720 × 96 × 1024 cells) of

the statically stable IGW: (a) 3-D initial condition with the isosurface b = −0.03m s−2 (green

colour). (b) - (f) flow field averaged in the y⊥-direction (greyscale contours: buoyancy, coloured

lines: total energy dissipation)
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Figure 12. As in figure 6 but for the statically stable IGW. The resolutions used for the 3-D

DNS were 720 × 96 × 1024 (fine) and 512 × 64 × 768 (coarse). The curves in the lower part of

the left panel show the maximum (solid line) and mean (dashed line) energy in the linear 2.5-D

integration initialized with the primary SV, and the vertical dotted line marks the optimization

time (7.5 minutes). For reference, the energy density in the unperturbed IGW is 54.5 m2s−2.
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Figure 13. Spanwise and streamwise averaged total energy dissipation from the fully resolved

3-D (left) and 2.5-D (right) DNS of the statically stable IGW. Contours equally spaced on a

logarithmic (base 10) scale. Solid light grey line is the contour Ri = 1/4 (see Eq. 17) and the

heavy dashed black line represents a fixed point in the Earth-frame.

Figure 14. Kolmogorov length in the 3-D DNS of (a) the stable IGW and (b) the unstable

HGW. The threshold where the simulation is supposed to be fully resolved is indicated by a

horizontal line for each simulation.

D R A F T September 17, 2014, 3:51pm D R A F T



FRUMAN ET AL.: DNS OF BREAKING INERTIA-GRAVITY WAVES X - 59

0 1 2 3 4 5

40

45

50

55

60

65

λ⊥ (km)

g
ro

w
th

fa
ct

o
r

SV τ = 5 min. growth factor

0 1 2 3 4 5

3

4

5

6

7

8

9

10

λ⊥ (km)

g
ro

w
th

fa
ct

o
r

Random |k|−5/3 initialization

Figure 15. As in figure 3 but for the statically unstable HGW perturbed by its leading

transverse singular vector. Filled diamonds in left panel indicate growth factors of leading twelve

singular vectors with λ⊥ = 1000 m and λ⊥ = 3000 m.
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Figure 16. As in figure 4 but for the statically unstable HGW perturbed by the leading

transverse normal mode.

Figure 17. Snapshots of the buoyancy field from the fine 3-D DNS (15363 cells) of the statically

unstable HGW: (a) 3-D initial condition with the isosurface b = 0.2m s−2 (green colour). (b)

- (f) flow field averaged in the y⊥-direction (greyscale contours: buoyancy, coloured lines: total

energy dissipation)

Figure 18. As in figure 6 but for the statically unstable HGW. The 3-D DNS were performed

with 15363 (fine), 7683 (coarse 1) and 3843 (coarse 2) gridcells.
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Figure 19. As in figure 13 but for the unstable HGW. The fine resolution simulation (15363

cells) was used for the 3-D plot.

Figure 20. As in figure 8 but for the unstable HGW. Plot times correspond to the moment

of maximum energy dissipation in the 3-D simulation (15 minutes), a time after which the wave

has decayed to near its saturation level (30 minutes) and the end of the simulations (90 minutes).

The 3-D spectra were computed using the medium (coarse 1) resolution DNS.
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