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Summary

Trends in climate time series are habitually estimated on the
basis of the least-squares method. This estimator is optimal
if the residuals follow the Gaussian distribution. Unfor-
tunately, only a small number of observed climate time
series fulfil this assumption. This work introduces a robust
method for trend analyses of non-Gaussian climate var-
iables. Robust trend analyses as well as probability as-
sessments of extreme events (Tromel and Schonwiese
2006) represent an application of the generalized time
series decomposition technique. Tromel (2005) and Tromel
and Schonwiese (2005) applied this decomposition tech-
nique to monthly precipitation sums from a German station
network of 132 time series covering 1901-2000 in order to
achieve a statistical modeling of the time series. The time
series under consideration can be interpreted as a realiza-
tion of a Gumbel-distributed random variable with time-
dependent scale and location parameter. More precisely,
each observed value can be seen as one possible realization
of the estimated probability density function (PDF) with the
location and the scale parameter of the respective time step.
Consequently, the expected value of the Gumbel-distributed
random variable can be estimated for every time step of the
observation period and the statistical modeling represents
an alternative approach to estimate trends in observational
precipitation time series. The method is robust with respect
to observed high precipitation values. The influence of
relatively high precipitation sums is not larger than justified
from a statistical point of view and changes in all param-
eters (here location and scale parameter) of the distribution
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can be taken into account. Monte-Carlo-simulations
demonstrate the smaller mean squared error of the trend
estimator using the statistical modeling. The least-squares
estimator often shows a positive bias, while the method
introduced provides robust monthly trend estimates taken
into account the statistical characteristics of precipitation.

1. Introduction

One important task of statistical climatology is
the description of climate variability. Observed
climate time series represent a reliable basis for
statistical analyses. The most simple and broadly
used model in trend analyses is the interpretation
of the time series as a superposition of a linear
trend and Gaussian noise, i.e., the deterministic
part is restricted to a trend and the residuals
should follow the Gaussian distribution. How-
ever, this model is insufficient to achieve a com-
plete description of most of the observed time
series. So, Grieser et al. (2002) consider tempera-
ture time series as a superposition of trends, an-
nual cycle, episodic components, extreme events
and noise. Actually, the residuals can not be dis-
tinguished from the realization of a Gaussian-
distributed random variable. In that case the
expectation at a given time is determined easily
as the sum of the detected analytical functions.
The so-called distance function used to fit the
analytical function is the quadratic function and
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the associated method including the minimi-
zation rule of quadratic deviations from fitted
functions is the least-squares method itself. The
estimator becomes a maximum likelihood estima-
tor if the residuals can not be distinguished from
the realization of a Gaussian random variable.
Obviously, under the assumption of Gaussian-
distributed residuals, the influence of a single
point increases very fast with increasing distance
from the mean value. The expected probability of
occurrence is very small, so high relevance is
attributed to their occurrence. Figure 1 illustrates
the sensitivity of the least-squares method i.e.,
linear regression to relatively high values. On
the left-hand side, all values are in line with a
negative linear trend. On the right-hand side, it
is just one single value turning the negative into a
positive signed trend. The influence of a single
value is unlimited, i.e., the larger the value con-
sidered in Fig. 1 the larger the amplitude of the
estimated trend.

One simple step towards robust trends is the
elimination of extreme values before trend analy-
ses are performed. A similar approach is presented
by Huber (1981). The main idea of Huber-k esti-
mators is to prevent the quadratic influence of
values more deviant than k units from the mean
value.

Huber-k estimators are less sensitive to ex-
treme values. However, they do not take advan-
tage from knowledge of the PDF of the residuals.
The distribution of monthly precipitation time
series is not Gaussian. The tails are more pro-
nounced and a greater number of relatively high
deviations can be expected. Contrary to the
Gaussian distribution, observed precipitation dis-
tributions are skewed to the left. Furthermore, the
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i in the y-direction (right, from
X-axis Rousseeuw and Leroy 1987)
traditional Gaussian model is not suitable to de-
scribe observed changes in the variance of precip-
itation time series. Therefore, another statistical
model should be applied for description of pre-
cipitation time series. Even though skewed dis-
tributions are already broadly used in analyses of
observational precipitation data (IPCC 2001), no
time series decomposition technique on the basis
of such a distribution, analogous to the Gaussian
approach introduced by Grieser et al. (2002), has
been carried out before. Consistently with the
maximum likelihood principle the negative loga-
rithm of the PDF defines the distance function to
be minimized. Consequently, the distance func-
tion affords the free choice of the distribution
the decomposition procedure is based on. Addi-
tionally, the distance function allows for time-
dependent parameters in any case. Actually, the
generalized time series decomposition technique
(Tromel and Schonwiese 2005) optionally in-
terprets climate time series as a realization of a
Gaussian- or Gumbel-distributed random variable
with time-dependent location and scale parameter,
respectively, or time series are interpreted as a
realization of a Weibull-distributed random vari-
able with time-dependent scale and shape param-
eter. Application of the decomposition technique
to monthly precipitation sums from a German
station network of 132 time series provides a
complete analytical description of the time series
on the basis of the Gumbel distribution. The cor-
responding distance function p of the Gumbel
distribution is

p(x,1) = In(b(f)) + exp (_ X ;(?)(¢)> )

x—a(t)
b(1)
(1)
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Fig. 2. The PDFs (left) of the Gumbel distribution with two different scale and location parameters and the respective

distance functions (right)

with the location parameter a(f) and the scale pa-
rameter b(f). So, the basis functions are now used
to describe the scale and the location parameter of
the Gumbel distribution. Different kinds of trend
(linear, progressive and degressive), constant or
significantly changing annual cycle and episodic
components are allowed. Figure 2 shows on the
left-hand side the PDF of the Gumbel distribution
for two different location and scale parameters.
On the right-hand side the respective distance
functions can be seen. The tails are more promi-
nent and consequently, if we take a look at the
distance functions, the influence increases less
rapidly than in the quadratic case. We observe an
almost linear increase for large distances (see also
Eq. (1)). Furthermore, one value in a given dis-
tance from the location estimator has more weight
the smaller the scale parameter. In this way, struc-
tured components can be detected in different
parameters and estimators of different parameters
compete with each other.

One drawback in its application to time series
analysis of observed precipitation sums is the
unbounded lower tail of the Gumbel distribution.
A fitted Gumbel distribution often provides a
non-zero probability for negative precipitation
sums (see again Fig. 2, left). However, the maxi-
mum likelihood principle chooses the distri-
bution parameters that maximize the probability
of the whole data set and the terminal residual
analysis of the generalized time series decom-
position technique confirms the complete de-
scription of the time series as a realization of a
Gumbel-distributed random variable. Unfortunate-

ly, the Gumbel model is not sufficient for all
monthly precipitation time series. Already within
the European precipitation regime an annual cycle
or long-term trends in the shape of the distribu-
tion are observed. A statistical modeling based
on the Weibull distribution represents an adequate
description in these cases (see again Tromel and
Schonwiese 2005). The Weibull distribution owns
three parameters, namely the location, the scale
and the shape parameter. Not until arid or semi-
arid precipitation regimes are considered the
method fails. A sufficient amount of rain is re-
quired each month in order to estimate a PDF
for every time step of the observation period.

In Sect. 2 of this paper the definitions of the
expected value of a Gumbel-distributed random
variable and a Weibull-distributed random vari-
able are given. These equations can be used to
perform trend analyses. In Sect. 3 some results of
an application to a German station network of
132 precipitation time series are presented. A
subsequent presentation of results of performed
Monte-Carlo simulations underlines the advan-
tages of the trend estimator introduced and quan-
tifies the mean squared error of both, the least-
squares estimator and the estimator based on the
statistical modeling of the time series.

2. Method

The expected value pu(f) at time ¢ of a Gumbel-
distributed random variable is defined as

pu(t) = a(t) +vb(1) (2)
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(Rinne 1997) with Eulers constant v=0.57722,
indicating that changes in the location a(¢) and
the scale parameter b(r) reveal changes in the
mean value. So, if the decomposition proce-
dure succeeds, the full analytical description of
monthly precipitation series provides the expect-
ed value for every time step of the observation
period. This result can be used to take into ac-
count the skewness of the distribution and changes
in different parameters to estimate trends in the
expectation.

Addressing L =N/12 years of monthly climate
time series, the trend of a Gumbel-distributed cli-
mate variable in a specific month j=1,...,12
can be defined as

Apj = a(Tyy) +7b(Ty) — a(Ty;) —vb(Tyy) - (3)

where the new time variable Tj; with subscripts
i=1,...,L and j=1,...,12 denotes the j-th
month in the i-th year of the observation period.

The expectation p(r) at time 7 of a Weibull-
distributed random variable with constant loca-
tion parameter ay = (0 mm, time-dependent scale
parameter by/(f), and shape parameter cyAf) is
defined as

) = ot (14 ) (@

(Rinne 1997) with the Gamma-function

o0

I'(z) = Jtzle’dt. (5)
0

Analogous to Eq. (3) the trend in a specific
month j = 1,...,12 of a Weibull-distributed cli-
mate variable can be defined as

Apj = bw(Ty))T (1 + ﬁ)

—bW(le)F<1 +ﬁ> (6)

This approach robustifies trend estimation on three
different perspectives: One step towards robust
trend estimates is the a priori elimination of un-
expected values. Grieser et al. (2002) defined ex-
treme events as unlikely extreme values which
did not happen by chance. After the separation
of structured components they found a small
number of these extreme events which may let
the residuum differ from Gaussian noise. In this
work the definition of extreme events is applied

analogously to the Gumbel model. So, extreme
events with respect to the Gumbel model are ex-
tracted and do not influence the trend estimation.

Secondly, the fit of an adequate PDF by com-
paring Gumbel, Weibull, and the Gaussian distri-
bution is a further contribution to robustification
of trend estimates. Under Gaussian assumptions
with constant variance, the quadratic function is
used to fit the linear trend, for example. Now, the
use of the distance function which can be justi-
fied from a statistical point of view ensures prop-
er weighting of the observed values in order
to estimate structured components in the distri-
bution parameters. Relatively high values get less
influence in the Gumbel or Weibull case, be-
cause their occurrence is not as likely as in the
Gaussian case.

Thirdly, significant structured components are
fitted to the whole time series instead to the
sub-series of single calendar months. The least-
squares estimator only takes into account N/12
monthly values in order to estimate the trend of a
specific month during an observation period of
N/12 years. Contrary, the method introduced es-
timates the trend in each month on the basis of
all N monthly precipitation sums. Consequently,
estimated trends in different months are less sen-
sitive to single values. Seasonal differences con-
cerning the sign and the magnitude of the trend
are given by long-term changes in the annual
cycle of the distribution parameters and further
several significant changes in the parameters.
Unreasonable changes in the trend estimates be-
tween adjacent calendar months caused by single
relatively high precipitation sums are avoided.

3. Application to observed German
precipitation

In this section the application of the generalized
decomposition technique to estimate changes in
the expected value of precipitation time series,
that is ordinary trends, is discussed. Figure 3
shows trend estimates for January (left chart)
provided by the method introduced in this paper
compared to the results of linear trend estimates
on the basis of the ordinary least-squares method
(right chart). Obviously, in January both esti-
mators provide similar spatial structures. We ob-
serve positive trends in the western and the
southern part of Germany and negative trends
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January

Fig. 3. Precipitation trends in mm in the expected value during 1901-2000 for Germany, January, estimated on the basis of
the statistical modeling (left) compared to the linear trend estimates using Gaussian assumptions (right)

or nearly unchanged expectations in the eastern
part of Germany. But the least-squares estimator
provides higher trend amounts. Consequently,
these results confirm that application of the

August 6f’

least-squares estimator to non-Gaussian precipi-
tation time series often implies a positive bias.
Gaussian assumptions may generate or amplify
a trend. While a stationary Gumbel distribution

August ‘f;

Fig. 4. Same as in Fig. 3 but for August
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could still explain the occurrence of some rela-
tively high values, Gaussian assumptions may
already cause a shift of the distribution in order
to explain their occurrence. Figure 4 shows again
both trend maps but for August. Now, the differ-
ences are more conspicuous. The least-squares
estimator assumes negative trends in the greatest
part of Germany. Compared to January, the neg-
ative trends in the eastern part of Germany are
now more pronounced, even if the Gumbel mod-
el is used. However, the trend map provided by
the method introduced still shows positive trends
in the south. No significant change in the sign of
the trend is detected within the statistical modeling
of the whole time series. The least-squares esti-
mator is applied to 12 sub-time series separately
in order to yield the trend for every single month.
This approach is less robust and provides un-
reasonable differences between the trends of the
single months. Within the method introduced large
unreasonable differences in trend estimates are
condemned as untrustworthy from a meteorologi-
cal point of view. The reader should also com-
pare monthly trend maps of subsequent calendar
months on the basis of the Gumbel model (see
Tromel 2005, for the other trend maps of the year)
with trend maps estimated on the basis of the least-
squares method (Rapp and Schonwiese 1996).

3.1 Monte Carlo simulations

In the following, the results of Monte-Carlo sim-
ulations should clarify whether the more exten-
sive statistical modeling really provides the more
reliable trend estimates. In particular, these simu-
lations quantify the mean squared errors of both
estimators.

For the German station network the residual
analysis of the generalized time series decom-
position technique approves the complete de-
scription of the time series as a realization of
a Gumbel-distributed random variable. Conse-
quently, the least-squares estimator is applied to
artificial generated Gumbel-distributed time se-
ries in order to evaluate the trend estimates on
the basis of the least-squares method on the one
hand and the trend estimates on the basis of the
statistical modeling on the other hand. Generated
random time series with a priori defined changes
in the expected value are used to compare the
given trends with the least-squares estimates. In
this way a possible systematic bias associated
with the application of the least-squares method
to observed non-Gaussian precipitation time se-
ries can be identified.

Eight different experiments, i.e., positive and
negative changes in the expectation caused by
changes in the location and the scale parameter
of the distribution, are performed. Trend ampli-
tudes are set to be in the magnitude of monthly
trends in precipitation time series in millimetre
per year observed in the 20th century in Germany.
The experiments only consider linear trends.

In the first step 100 Gumbel-distributed ran-
dom time series with a sample size of N =1000
values are generated for each experiment, re-
spectively. Table 1 shows for each experiment
the predefined change in the expected value Ay,
caused by linear changes in the location parameter
Aa and the scale parameter Ab, in compari-
son to the mean value Ay, of all 100 least-
squares estimates of the trend, determined by
linear regression, as well as the standard devia-
tion of these trends o, the maximum A,u}Q and

Table 1. Trends of 100 generated Gumbel-distributed time series of sample size N = 1000. The predefined linear trends Ay are
caused by linear changes in the location parameter Aa with simultaneous changes in the scale parameter Ab or constant scale
parameter b. Real changes in the expected value Ay are compared to the mean value of least-squares estimates A_MKQ
Furthermore, the standard deviation o5, as well as he maximum and the minimum (A,u}Q bzw - A#EQ) of the trend estimates

are given
Aa=15, Aa=15, Aa=38, Aa=0, Aa=38, Aa=—15, Aa= -8, Aa=0,
b=50 b=20 b=40 b=40 b=40+ A8 b=50 b=40— A8 b=40+ Al10

Ap 15 15 8 0 12.6 —15 —-12.6 5.77

Ajigg 15.49 15.20 8.39 0.39 13.05 —14.51 —12.27 6.22

OAp 6.97 2.79 5.57 5.57 6.16 6.70 5.02 6.31

AMEQ 0.78 9.31 —3.38 —11.38 3.08 —29.22 —22.83 —7.06

A;L,*(Q 33.44 22.38 22.75 14.75 28.23 3.44 1.27 21.81
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Table 2. Same as Table 1, but the sample size of the random time series is N =100
Aa=15, Aa=15, Aa=28, Aa=0, Aa=38, Aa=—15, Aa= -8, Aa=0,
b=50 b=20 b=40 b=40 b=40+ A8 b=50 b=40—A8 b=40+ Al10
Ap 15 15 8 0 12.6 —15 —12.6 5.77
AuKQ 12.85 14.14 6.28 —-1.72 10.78 —17.15 —14.21 3.90
OAp 23.82 9.53 19.06 19.06 20.91 23.82 17.31 21.39
AHEQ —43.84 —8.54 —39.07 —47.07 —38.96 —73.84 —55.18 —49.93
Au}Q 59.52 32.81 43.62 35.62 51.44 29.52 22.13 46.37

the minimum Ayig, of all the trend estimates.
Evidently, Table 1 shows only minor differences
in the mean value Ay, and a priori defined
trend amplitudes Ap. However, we observe a
positive bias and the bias increases with magni-
tude of the scale parameter. One possible expla-
nation 1is that relatively high values are getting
more weight than justified from a statistical point
of view. The standard deviations o, are consid-
erably high. Depending on the occurrence of the
relatively high values in the Gumbel-distributed
random time series, the least-squares estimator
varies in the first experiment with linear incre-
ment in the location parameter Aa = 15 and con-
stant scale parameter b =50 between 0.78 and
33.44. Furthermore, this range also increases
with the value of the scale parameter. It is worth
mentioning that the least-squares method some-
times provides negative trend estimates if we
keep the predefined expected value constant
(Aa = 0, b =40). Even though in case of an in-
crease of the expected value (Aa =8, b=40),
negative trend estimates occur.

The sample size plays a major role for the
mean squared error of the estimator, defined as
the sum of the squared bias (Apgy — Au)2 and
the variance (O’AM)Z. So, all experiments are per-
formed again with the sample size N=100.
Table 2 shows the results analogous to Table 1.

We now observe a negative bias in all experi-
ments. Furthermore, the absolute value of the
bias is significantly higher compared to the ex-
periments with sample size N = 1000. Generally,
the standard deviation or variance of the trend
estimator is higher in case of smaller sample size.
The experiment with a linear increase of 15 units
in the location parameter and unvaried scale
parameter provides trend amplitudes between
—43.83 and 59.52.

The least-squares estimator provides large
mean squared errors in estimated precipitation
trends. However, it is interesting to see the mean
squared error of the trend estimator using the
distance function of the Gumbel distribution
pG- Smaller mean squared errors are anticipated
using the adequate distance function. The experi-
ments presented in Tables 1 and 2 are performed
again and the distance function of the Gumbel
distribution is used now. Statistical trend tests
are not applied in order to retain comparability.
Using Gaussian assumptions an F-test (Storch
and Zwiers 1999) proves the significance of a
regression relationship, but a modification of
the test statistic is necessary for non-Gaussian
residuals (Schrader and Hettmansperger 1980).
Tables 3 and 4 show again for all experiments the
mean value of the trend estimates Apg, the
standard deviation o, the minimum A,ug and

Table 3. With the distance function of the Gumbel distribution (index G instead of KQ) estimated trends of 100 generated
Gumbel-distributed time series of sample size N =1000. The experiments and notation are the same as in Tables 1 and 2

Aa=15, Aa=15, Aa=28, Aa=0, Aa=38, Aa=—15, Aa= -8, Aa=0,
b=50 b=20 b=40 b=40 b=40+ A8 b=50 b=40—A8 b=40+ Al0
Ap 15 15 8 0 12.6 —15 —12.6 5.77
A—NG 15.56 15.20 8.5 0.47 13.27 —14.25 —12.23 6.21
TAnG 7.14 2.87 5.76 5.67 5.91 7.01 4.1 5.90
Au,}Q 0.66 9.18 -3.57 —11.82 1.22 -29.20 —22.70 —6.24
A;QQ 3222 21.87 25.08 13.73 27.50 1.60 —-0.04 20.33




114 S. Tromel, C. D. Schonwiese

Table 4. Same as Table 3, but the sample size of the random time series is N =100

Aa=15, Aa=15, Aa=38, Aa=0, Aa=38, Aa=—15, Aa= -8, Aa=0,
b=50 b=20 b=40 b=40 b=40+ A8 b=50 b=40—A8 b=40+ A10
Ap 15 15 8 0 12.6 —15 —12.6 5.77
A_uG 11.18 13.43 5.06 —2.88 9.39 —18.24 —14.95 2.57
TAug 23.48 9.40 18.71 18.72 20.48 23.54 16.88 20.91
Apgo —44.70 —-9.49 —40.28 —47.66 —40.38 —74.08 —55.58 —48.27
A;L,*(Q 57.51 31.81 41.37 33.73 49.43 28.16 19.56 43.13

maximum Apg; arising in 100 generated time
series, respectively. Again experiments are per-
formed using the sample sizes N=1000 and
N =100. Obviously, application of the adequate
distance function is not definitely associated with
a smaller mean squared error of the trend estima-
tor. It is interesting to see that not the distance
function p but the sample size N is the most im-
portant factor to achieve reliable estimators for
trends of precipitation time series. Generally,
consistency is a property of the maximum likeli-
hood estimator. A possible explanation for simi-
lar mean squared errors may be the significance
of the trends, which was not considered in the
Monte-Carlo simulations. The additional differ-
ences between the F-test and the modified F-test
would complicate the comparison of the two
trend estimators.

However, the use of the adequate distance
function is necessary in order to retain a com-
plete analytical description of observed precip-
itation. In this way, monthly trends can be
estimated on the basis of the whole sample size.
Separate analyses of sub-time series containing
only one 12th of the whole sample size are no
longer necessary.

4. Conclusions

This paper introduces an alternative approach to
estimate trends in observed precipitation time
series. In the special case of 132 time series of
monthly precipitation totals 1901-2000 from
German stations, the interpretation as a realiza-
tion of a Gumbel-distributed random variable
with time-dependent location parameter and
time-dependent scale parameter reveals a com-
plete analytical description of the time series.
The deterministic part contains the annual cycle
and its changes concerning amplitude and phase
shifts, trends (linear, progressive and degressive)

and low frequency variations. These structured
components are detected in the location and the
scale parameter of the Gumbel distribution, which
describes the statistical part of the series. On the
basis of the achieved complete description of the
time series, the difference between the expecta-
tion in a special month in the last year and the
first year of the observation period can be defined
as the trend in the considered month.

In winter, both trend maps, on the basis of the
least-squares estimator and on the basis of the
Gumbel model, show the same spatial distribu-
tion of detected trends but the amplitudes are
smaller in the latter case. In summer, the differ-
ences are more pronounced. While the least-
squares estimator shows negative trends in the
overwhelming majority of stations, the time se-
ries decomposition technique does not detect
negative trends in the southern part of Germany.
A shift of the distribution to higher values de-
scribes the observational time series in the south-
ern part of Germany in winter and in summer.

Enhanced robustness of the trend estimates
based on the time series decomposition technique
is achieved from three different perspectives:
(1) the elimination of unexpected values, (2) the
fit of an adequate PDF, and (3) the fit of a struc-
ture to whole time series but not only single
calendar months.

Monte-Carlo simulations underline the smaller
mean squared error associated with an increase
of the sample size. It is surprising, that the least-
squares estimator does not seem to be inferior to
the estimator of the Gumbel model if the bias and
the variance are compared for the same sample
size. Smaller errors were anticipated using the
adequate distance function, because the distance
function of the Gumbel distribution takes the
skewed distribution of precipitation time series
as well as the more prominent tails into account.
The possibility to take into account changes in
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different parameters of the distribution speaks
also in the favour of the more extensive statistical
modeling because observed precipitation time se-
ries often show changes in the variance as well as
in the shape of the distribution. A possible expla-
nation for similar mean squared errors using the
same sample size may be the significance of the
trends, which was not considered in the Monte-
Carlo simulations. The additional differences
between the F-test, used for the least-squares es-
timator, and the modified F-test, used within the
generalized time series decomposition technique,
and further several possible tests like the Mann—
Kendall statistic (Schonwiese 2006) would de-
range the comparison of the two trend estimators
considered.

Definitely, the least-squares method provides
less robust estimates and generates greater dif-
ferences in the trends of various months. These
unreasonable changes in trend amplitudes of ad-
jacent calendar months are untrustworthy from a
meteorological point of view. Within the method
applied significant detected changes in the annual
cycle of the distribution parameters may generate
different trends in various months. However,
these seasonal variations are not caused by single
relatively high values.

To summarise, the method introduced provides
robust monthly trend estimates of observed pre-
cipitation time series taken into account the char-
acteristics of the climate variable and constrains
the influence of single high values.
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